Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conical intersections surfaces

Figure 9.29. Three conical intersection surface topologies for electron transfer processes in radical cations (adapted from reference 5). Figure 9.29. Three conical intersection surface topologies for electron transfer processes in radical cations (adapted from reference 5).
Fig. 1. Conical intersection surface topologies (top), and Renner-Teller surface topologies (bottom). Top left is a generic circular cone, such as is obtained from a Jahn-Teller problem involving only the linear vibronic coupling. Top right is a sloped conical intersection obtained in a general vibronic coupling problem where all three linear vibronic coupling constants are different. Bottom left to right show type-1, -II, -III Renner-Teller surfaces. These are obtained when only second-order vibronic coupling is included. Fig. 1. Conical intersection surface topologies (top), and Renner-Teller surface topologies (bottom). Top left is a generic circular cone, such as is obtained from a Jahn-Teller problem involving only the linear vibronic coupling. Top right is a sloped conical intersection obtained in a general vibronic coupling problem where all three linear vibronic coupling constants are different. Bottom left to right show type-1, -II, -III Renner-Teller surfaces. These are obtained when only second-order vibronic coupling is included.
There is a clear distinction between conically intersecting surfaces and two surfaces which touch, as in the so-called Renner-Teller effect for the degenerate states of linear molecules 142,43 (Fig. 7). For such a situation the electronic wave function is single valued and although there may be strong mixing between Born-Oppenheimer terms, one such term can always be taken as a first approximation to any state. [Pg.112]

We now discuss the —(CH)3— kink electronic structure and coupling involved in photoproduct formation after decay back to the ground state. In the conical intersection surface topology, illustrated in Figure 10b, there are two... [Pg.105]

Figure B3.4.16. A generic example of crossing 2D potential surfaces. Note that, upon rotating around the conic intersection point, the phase of the wavefunction need not return to its original value. Figure B3.4.16. A generic example of crossing 2D potential surfaces. Note that, upon rotating around the conic intersection point, the phase of the wavefunction need not return to its original value.
Baer R, Charutz D M, Kosloff R and Baer M 1996 A study of conical intersection effects on scattering processes—the validity of adiabatic single-surface approximations within a quasi-Jahn-Teller model J. Chem. Phys. 105 9141... [Pg.2330]

The stoi7 begins with studies of the molecular Jahn-Teller effect in the late 1950s [1-3]. The Jahn-Teller theorems themselves [4,5] are 20 years older and static Jahn-Teller distortions of elecbonically degenerate species were well known and understood. Geomebic phase is, however, a dynamic phenomenon, associated with nuclear motions in the vicinity of a so-called conical intersection between potential energy surfaces. [Pg.2]

Molecular aspects of geometric phase are associated with conical intersections between electronic energy surfaces, W(Q), where Q denotes the set of say k vibrational coordinates. In the simplest two-state case, the W Q) are eigen-surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian... [Pg.4]

Single surface calculations with a vector potential in the adiabatic representation and two surface calculations in the diabatic representation with or without shifting the conical intersection from the origin are performed using Cartesian coordinates. As in the asymptotic region the two coordinates of the model represent a translational and a vibrational mode, respectively, the initial wave function for the ground state can be represented as. [Pg.47]

Single surface calculations with proper phase treatment in the adiabatic representation with shifted conical intersection has been performed in polai coordinates. For this calculation, the initial adiabatic wave function tad(9, 4 > o) is obtained by mapping t, to) ittlo polai space using the relations,... [Pg.48]

At this point, it is important to note that as the potential energy surfaces are even in the vibrational coordinate (r), the same parity, that is, even even and odd odd transitions should be allowed both for nonreactive and reactive cases but due to the conical intersection, the diabatic calculations indicate that the allowed transition for the reactive case ate odd even and even odd whereas in the case of nomeactive transitions even even and odd odd remain allowed. [Pg.51]

The ordinary BO approximate equations failed to predict the proper symmetry allowed transitions in the quasi-JT model whereas the extended BO equation either by including a vector potential in the system Hamiltonian or by multiplying a phase factor onto the basis set can reproduce the so-called exact results obtained by the two-surface diabatic calculation. Thus, the calculated hansition probabilities in the quasi-JT model using the extended BO equations clearly demonshate the GP effect. The multiplication of a phase factor with the adiabatic nuclear wave function is an approximate treatment when the position of the conical intersection does not coincide with the origin of the coordinate axis, as shown by the results of [60]. Moreover, even if the total energy of the system is far below the conical intersection point, transition probabilities in the JT model clearly indicate the importance of the extended BO equation and its necessity. [Pg.80]

State basis in the molecule consists of more than one component. This situation also characterizes the conical intersections between potential surfaces, as already mentioned. In Section V, we show how an important theorem, originally due to Baer [72], and subsequently used in several equivalent forms, gives some new insight to the nature and source of these YM fields in a molecular (and perhaps also in a particle field) context. What the above theorem shows is that it is the truncation of the BO set that leads to the YM fields, whereas for a complete BO set the field is inoperative for molecular vector potentials. [Pg.101]

In this section, the adiabatic picture will be extended to include the non-adiabatic terais that couple the states. After this has been done, a diabatic picture will be developed that enables the basic topology of the coupled surfaces to be investigated. Of particular interest are the intersection regions, which may form what are called conical intersections. These are a multimode phenomena, that is, they do not occur in ID systems, and the name comes from their shape— in a special 2D space it has the fomi of a double cone. Finally, a model Flamiltonian will be introduced that can describe the coupled surfaces. This enables a global description of the surfaces, and gives both insight and predictive power to the fomration of conical intersections. More detailed review on conical intersections and their properties can be found in [1,14,65,176-178]. [Pg.277]

Figure 5, Sketch of a conical intersection. The vectors x and X2 are the GD and DC respectively, that lift the degeneracy of the two adiabatic surfaces, The plane containing these vectors is known as the branching space. Figure 5, Sketch of a conical intersection. The vectors x and X2 are the GD and DC respectively, that lift the degeneracy of the two adiabatic surfaces, The plane containing these vectors is known as the branching space.
Conical intersections can be broadly classified in two topological types peaked and sloped [189]. These are sketched in Figure 6. The peaked case is the classical theoretical model from Jahn-Teller and other systems where the minima in the lower surface are either side of the intersection point. As indicated, the dynamics of a system through such an intersection would be expected to move fast from the upper to lower adiabatic surfaces, and not return. In contrast, the sloped form occurs when both states have minima that lie on the same side of the intersection. Here, after crossing from the upper to lower surfaces, recrossing is very likely before relaxation to the ground-state minimum can occur. [Pg.283]

A conical intersection needs at least two nuclear degrees of freedom to form. In a ID system states of different symmetry will cross as Wy = 0 for i j and so when Wu = 0 the surfaces are degenerate. There is, however, no coupling between the states. States of the same symmetry in contrast cannot cross, as both Wij and Wu are nonzero and so the square root in Eq. (68) is always nonzero. This is the basis of the well-known non-crossing rule. [Pg.286]

Other studies have also been made on the dynamics around a conical intersection in a model 2D system, both for dissociahve [225] and bound-state [226] problems. Comparison between surface hopping and exact calculations show reasonable agreement when the coupling between the surfaces is weak, but larger errors are found in the shong coupling limit. [Pg.298]

For the mechanistic studies made, this protocol is able to give information about how dynamical properties affect the evolution of a photochemical reaction, but is not accurate enough for quantitative results. The information obtained relates to aspects of the surface such as the relative steepness of regions on the lower slopes of the conical intersection, and the relative width of alternative channels. [Pg.302]


See other pages where Conical intersections surfaces is mentioned: [Pg.396]    [Pg.396]    [Pg.2]    [Pg.2]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.31]    [Pg.32]    [Pg.40]    [Pg.51]    [Pg.51]    [Pg.51]    [Pg.53]    [Pg.65]    [Pg.80]    [Pg.81]    [Pg.98]    [Pg.100]    [Pg.144]    [Pg.220]    [Pg.252]    [Pg.283]    [Pg.288]    [Pg.298]    [Pg.302]    [Pg.303]    [Pg.303]    [Pg.304]    [Pg.305]    [Pg.305]    [Pg.306]    [Pg.308]   
See also in sourсe #XX -- [ Pg.356 , Pg.357 ]




SEARCH



Conic intersections surface

Conic intersections surface

Conical intersection

Conical intersection of potential energy surfaces

Conical intersections, potential energy surfaces

Conicity

Intersect

Potential energy surface conical intersection, nonadiabatic coupling

Surface crossings conical intersection

Surfaces intersections

© 2024 chempedia.info