Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conduction mechanisms Electrons

Lasdy, the importance of electroceramic substrates and insulators should not be overlooked. Here one strives to raise the breakdown strength by eliminating the interesting conduction mechanisms just described. Spark plugs, high voltage insulators, and electronic substrates and packages are made from ceramics like alumina, mullite [55964-99-3] and porcelain [1332-58-7]. [Pg.309]

The results of several studies were interpreted by the Poole-Erenkel mechanism of field-assisted release of electrons from traps in the bulk of the oxide. In other studies, the Schottky mechanism of electron flow controlled by a thermionic emission over a field-lowered barrier at the counter electrode oxide interface was used to explain the conduction process. Some results suggested a space charge-limited conduction mechanism operates. The general lack of agreement between the results of various studies has been summari2ed (57). [Pg.331]

This situation appears to be different when microwave conductivity measurements are used in parallel with electrochemical measurements. As Fig. 1 shows, there is a marked parallelism between electrochemical processes and microwave conductivity mechanisms. In both cases electrical fields interact with electronic or ionic charge carriers as well as dipoles. In electrochemical processes, it is a static or low-frequency electrical field that is moving electrical charge carriers or orienting dipoles. In a micro-wave measurement, the electric field of the microwave interacts with... [Pg.436]

There is currently great commercial interest in plastic alternatives to conventional silicon-based components in electronic devices. Polymeric architectures offer flexible, low-cost, processable materials for this lucrative global market, and can be designed with more emphasis on device performance. The principal goals of improved band filling, dimensionality and new conductance mechanisms remain the same, and provide a subtly different challenge to the materials chemist. [Pg.771]

Recently, it has been reported that by incorporation into non-active molecular junctions of Bs with low-lying energy sites, the conduction mechanism can be dominated by electron hopping [32, 47, 84, 85]. [Pg.94]

Oxides play many roles in modem electronic technology from insulators which can be used as capacitors, such as the perovskite BaTiOs, to the superconductors, of which the prototype was also a perovskite, Lao.sSro CutT A, where the value of x is a function of the temperature cycle and oxygen pressure which were used in the preparation of the material. Clearly the chemical difference between these two materials is that the capacitor production does not require oxygen partial pressure control as is the case in the superconductor. Intermediate between these extremes of electrical conduction are many semiconducting materials which are used as magnetic ferrites or fuel cell electrodes. The electrical properties of the semiconductors depend on the presence of transition metal ions which can be in two valence states, and the conduction mechanism involves the transfer of electrons or positive holes from one ion to another of the same species. The production problem associated with this behaviour arises from the fact that the relative concentration of each valence state depends on both the temperature and the oxygen partial pressure of the atmosphere. [Pg.236]

The resulting materials have approximately equal ionic and electronic contributions to the total conductivity at doping levels between Ce0.8Pro.202-s and Ce0.75Pr0.25O2-s. The electronic conductivity mechanism in these oxides is believed to be by way of electron hopping between Pr4+ and Pr3+. [Pg.379]

An example of a layer structure mixed conductor is provided by the cathode material L CoC used in lithium batteries. In this solid the ionic conductivity component is due to the migration of Li+ ions between sheets of electronically conducting C0O2. The production of a successful mixed conductor by doping can be illustrated by the oxide Cei-jPxx02- Reduction of this solid produces oxygen vacancies and Pr3+ ions. The electronic conductivity mechanism in these oxides is believed to be by way of electron hopping between Pr4+ and Pr3+, and the ionic conductivity is essentially vacancy diffusion of O2- ions. [Pg.394]

Another conductivity mechanism could be suggested for LB films of this polymer with Ag+ cations. Such cations can accept or release electrons easily, so in the layer of such cations the conductivity could be caused by electron transitions between the ions with different degrees of oxidation. With tunneling microscopy an anomaly in the dl/dV(V) curves near zero bias was discovered for the LB films in Ag form with an odd number of layers there was a conductivity peak some 150-200 mV wide (Figure 7.4, Curves 1, 3) but no anomaly for these same films with an even number of layers (Figure 7.4, Curve 2). For LB films with an odd number of layers the ordered superstructure of the scale 11.5 x 11.5 x lO cm has been found in a conductivity dl/dV (x,y) measurement regime. The scale of such a structure corresponds to 3 x 2 surface reconstruction (Figure 7.5). [Pg.106]

Figures 8-16 and 8-17 show the state density ZXe) and the exchange reaction current io( ) as functions of electron energy level in two different cases of the transfer reaction of redox electrons in equilibrium. In one case in which the Fermi level of redox electrons cnxEDax) is close to the conduction band edge (Fig. 8-16), the conduction band mechanism predominates over the valence band mechanism in reaction equilibrium because the Fermi level of electrode ensa (= nREDOK)) at the interface, which is also dose to the conduction band edge, generates a higher concentration of interfadal electrons in the conduction band than interfadal holes in the valence band. In the other case in which the Fermi level of redox electrons is dose to the valence band edge (Fig. 8-17), the valence band mechanism predominates over the conduction band mechanism because the valence band holes cue much more concentrated than the conduction band electrons at the electrode interface. Figures 8-16 and 8-17 show the state density ZXe) and the exchange reaction current io( ) as functions of electron energy level in two different cases of the transfer reaction of redox electrons in equilibrium. In one case in which the Fermi level of redox electrons cnxEDax) is close to the conduction band edge (Fig. 8-16), the conduction band mechanism predominates over the valence band mechanism in reaction equilibrium because the Fermi level of electrode ensa (= nREDOK)) at the interface, which is also dose to the conduction band edge, generates a higher concentration of interfadal electrons in the conduction band than interfadal holes in the valence band. In the other case in which the Fermi level of redox electrons is dose to the valence band edge (Fig. 8-17), the valence band mechanism predominates over the conduction band mechanism because the valence band holes cue much more concentrated than the conduction band electrons at the electrode interface.
Electron-transfer proteins have a mechanism that is quite different from the conduction of electrons through a metal electrode or wire. Whereas the metal uses a continuous conduction band for transferring electrons to the centre of catalysis, proteins employ a series of discrete electron-transferring centres, separated by distances of I.0-I.5nm. It has been shown that electrons can transfer rapidly over such distances from one centre to another, within proteins (Page et al. 1999). This is sometimes described as quantum-mechanical tunnelling, a process that depends on the overlap of wave functions for the two centres. Because electrons can tunnel out of proteins over these distances, a fairly thick insulating layer of protein is required, to prevent unwanted reduction of other cellular components. This is apparently the reason that the active sites of the hydrogenases are hidden away from the surface. [Pg.180]

A table of ionic conductors that behave in a similar way to a-Agl is given in Table 5.4. Some of these structures are based on a close-packed array of anions and this is noted in the table the conducting mechanism in these compounds is similar to that in a-Agl. The chalcogenide structures, such as silver sulfide and selenide, tend to demonstrate electronic conductivity as well as ionic, although this can be quite useful in an electrode material as opposed to an electrolyte. [Pg.219]

If states at the Fermi energy of a condensed electron gas are localized, two conduction mechanisms are possible. [Pg.50]

Fig. 1.28 The mechanism of hopping conduction. The electron jumps from a state below the Fermi level to a nearby state (i) or distant state (ii). Fig. 1.28 The mechanism of hopping conduction. The electron jumps from a state below the Fermi level to a nearby state (i) or distant state (ii).
The electron mobilities at 296 and 420°K are given for several Cr-doped and -doped samples in Table II. The data for the Cr-doped crystals should be considered less accurate since a mixed-conductivity analysis was necessary in most cases (Look, 1980). However, the temperature dependences are not unlike those of conductive GaAs samples with similar impurity concentrations (1016—1018 cm-3). At least two of the crystals (MA 287/80 and MOR 56/76) appeared to be inhomogeneous, as evidenced by nonlinear Arrhenius plots. However, it is doubtful that the bulk of the data require a percolation-type conduction mechanism to be operative, as has been suggested (Robert et ai,... [Pg.95]

Some examples of intrinsic semiconductors are silicon and germanium. These materials do not contain any impurities. The conduction mechanism can be represented in a simplified way by means of a projection diagram of a silicon or germanium crystal (fig. 11.4.6) By supplying energy to the material, the electrons are torn free from their atoms and positively charged electron holes (+) arise. Placing the material in an electric field will result in the transport of holes ... [Pg.231]


See other pages where Conduction mechanisms Electrons is mentioned: [Pg.361]    [Pg.2409]    [Pg.236]    [Pg.451]    [Pg.126]    [Pg.471]    [Pg.85]    [Pg.485]    [Pg.231]    [Pg.481]    [Pg.290]    [Pg.124]    [Pg.338]    [Pg.34]    [Pg.83]    [Pg.433]    [Pg.548]    [Pg.240]    [Pg.710]    [Pg.845]    [Pg.360]    [Pg.528]    [Pg.86]    [Pg.356]    [Pg.131]    [Pg.1466]    [Pg.1466]    [Pg.307]    [Pg.93]    [Pg.466]   
See also in sourсe #XX -- [ Pg.11 , Pg.13 , Pg.14 , Pg.15 , Pg.62 , Pg.206 , Pg.293 , Pg.295 , Pg.299 ]




SEARCH



Conductance electronic

Conductance mechanisms

Conducting Mechanisms

Conducting electrons

Conduction electrons

Conductivity mechanism

Conductivity: electronic

Electron conductance

Electron conductivity

Electron mechanisms

Electronic conduction

Electronic conductivity mechanisms

Electronically conducting

Electronics conduction

© 2024 chempedia.info