Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conducting materials, optically

The study of organic semiconductors and conductors is highly iaterdisciplinary, involving the fields of chemistry, soHd-state physics, engineering, and biology. This article provides a treatment of the theoretical aspects of organic semiconductors as well as an overview of recent advances ia the field and the uses of these materials based on their conductive and optical properties. [Pg.236]

Just as selective oxidation can be carried out on these systems, reduction also occurs with considerable selectively. Hydrogenation of binaphthol (Pd catalyst) in glacial acetic acid at room temperature for seven days affords the octahydro (bis-tetrahydro) derivative in 92% yield with no apparent loss of optical activity when the reaction is conducted on optically pure material. The binaphthol may then be converted into the bis-binaphthyl crown in the usual fashion. [Pg.50]

The interest in the synthesis and properties of delafossite structured compounds that have the general formula of ABO2 have grown due to their p-type conductivity and optical transparency. The application of ultrasound for the synthesis of ternary oxide AgMC>2 (M = Fe, Ga) has been investigated by Nagarajan and Tomar [44]. Above materials were obtained in crystalline form within 40-60 min of sonication. [Pg.202]

In IMS, supportive materials, whose surfaces are coated with conductive materials, are used in principal. In the simplest way, the tissue slices can be placed on a metal MALDI plate directly.9 In this case, however, the target plate must be cleaned carefully after the measurement is over. Currently, the method commonly used is that samples are prepared on a disposable plastic sheet or a glass slide coated with series of conductive materials. In particular, a plastic sheet (ITO sheet) or glass slide (ITO glass slide available from Bruker Daltonics K.K., Billerica, MA, or Sigma, St. Louis, MO) coated with ITO (indium-tin oxide) is useful because it has superior optical transparency... [Pg.373]

The optical and electronic functions of polysilanes owe to their delocalized highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) that are occupied by holes and conduction electrons, respectively. The polymer does not show high conductivity or optical nonlinearity if the electrons or holes are localized on a small part of the polymer chain. To elucidate the structure of HOMO and LUMO is therefore important for the molecular design of polysilanes as functional materials. [Pg.627]

In a typical spectroelectrochemical measurement, an optically transparent electrode (OTE) is used and the UV/vis absorption spectrum (or absorbance) of the substance participating in the reaction is measured. Various types of OTE exist, for example (i) a plate (glass, quartz or plastic) coated either with an optically transparent vapor-deposited metal (Pt or Au) film or with an optically transparent conductive tin oxide film (Fig. 5.26), and (ii) a fine micromesh (40-800 wires/cm) of electrically conductive material (Pt or Au). The electrochemical cell may be either a thin-layer cell with a solution-layer thickness of less than 0.2 mm (Fig. 9.2(a)) or a cell with a solution layer of conventional thickness ( 1 cm, Fig. 9.2(b)). The advantage of the thin-layer cell is that the electrolysis is complete within a short time ( 30 s). On the other hand, the cell with conventional solution thickness has the advantage that mass transport in the solution near the electrode surface can be treated mathematically by the theory of semi-infinite linear diffusion. [Pg.271]

The development of electrodes that exhibit optical transparency has enabled spectral observations to be made directly through the electrode simultaneously with electrochemical perturbations [19-21]. These electrodes typically consist of a very thin film of conductive material such as Pt, Au, carbon, or a semiconductor such as doped tin oxide that is deposited on a glass or quartz substrate. Miniature metal screens, minigrid electrodes in which the presence of very small holes (6-40 fim) lends transparency, have also been used. Optically transparent electrodes (OTE) and the cells that incorporate them are discussed in Chapters 9 and 11. [Pg.63]

The special properties of OTEs that permit the use of transmission spectro-electrochemical techniques are often at cross purposes with the acquisition of reliable electrochemical data. The desire to have the superior electrical properties of bulk conducting materials, and thereby reliable electrochemical data, together with the power of a coupled optical probe led groups to develop various diffraction and reflection approaches to spectroelectrochemistry. Light diffracted by a laser beam passing parallel to a planar bulk electrode can be used to significantly increase the effective path length and sensitivity in spectroelectrochemistry [66]. [Pg.286]

But the day of dumb buildings is on its way out, just as is the day of dumb cars, dumb airplanes, dumb weapons, dumb satellites, and just about any other kind of dumb structure you can imagine. The day of smart structures built with smart materials has just about arrived in the developed world. Smart materials have been defined as materials that respond to environmental stimuli by making some change in their physical characteristics, such as their size, shape, electrical or magnetic conductivity, or optical properties. Because they respond to change in the surrounding environment, smart materials are also sometimes called responsive materials. [Pg.106]

Transparent conducting oxides are widely used as electrodes in thin film optoelectronic devices as solar cells and light emitting diodes because of their transparency for visible light and their high electrical conductivity. Highest optical transparency and electrical conductivity are thus key aspects for such applications. Most work on TCO electrodes is, therefore, dedicated to find deposition parameters, which improve these material parameters. In addition, contact properties are essential for the application of TCOs as electrodes. [Pg.126]


See other pages where Conducting materials, optically is mentioned: [Pg.417]    [Pg.423]    [Pg.41]    [Pg.41]    [Pg.17]    [Pg.96]    [Pg.615]    [Pg.16]    [Pg.264]    [Pg.484]    [Pg.243]    [Pg.536]    [Pg.625]    [Pg.204]    [Pg.589]    [Pg.201]    [Pg.616]    [Pg.653]    [Pg.117]    [Pg.453]    [Pg.385]    [Pg.160]    [Pg.340]    [Pg.666]    [Pg.788]    [Pg.382]    [Pg.65]    [Pg.193]    [Pg.449]    [Pg.287]    [Pg.163]    [Pg.43]    [Pg.43]    [Pg.569]    [Pg.360]    [Pg.377]    [Pg.404]    [Pg.263]    [Pg.682]   


SEARCH



Conducting materials, optically transparent

Conductive materials

Conductivity materials

Optical conductance

Optical conductivity

Optical material

© 2024 chempedia.info