Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conditions first type

Notice that the left-hand side of this rule contains two types of clauses. The first type is the variable values of the current state and those necessary to compute the new state, while the second, represented by = computes the value of the variable in the new state. This last clause enables the procedural information about how to compute the state variables to be attached to the reasoning. We must, however, be careful about how much of the computation we hide procedurally, and how much we make explicit in the rules. The level to which computation can be hidden will be a function of the theories we employ to try to obtain new dominance and equivalence conditions. If we do not hide the computation, we will be able to explicitly reason about it, and thus may find simplifications or redundancies in the computation that will lead to more computationally efficient procedures. [Pg.305]

Rigorous kinetic analysis has shown [41] that the products of binary copolymerization, formed under the conditions of constant concentrations of monomers, may be described by the extended Markov chain with four states Sa, if to label monomeric units conventionally coloring them in red and black. Unit Ma is presumed to be black when the corresponding monomer Ma adds to the radical as the first monomer of the complex. In other cases, when monomer Ma adds individually or as the second monomer of the complex, the unit Ma is assumed to be red. As a result the state of a monomeric unit is characterized by two attributes, one of which is its type (a=l,2) while the second one is its color (r,b). For example, we shall speak about the unit being in the state Sx provided it is of the first type and red-colored, i.e. Mrx. The other states Sa are determined in a similar manner ... [Pg.182]

Monomers employed in a polycondensation process in respect to its kinetics can be subdivided into two types. To the first of them belong monomers in which the reactivity of any functional group does not depend on whether or not the remaining groups of the monomer have reacted. Most aliphatic monomers meet this condition with the accuracy needed for practical purposes. On the other hand, aromatic monomers more often have dependent functional groups and, thus, pertain to the second type. Obviously, when selecting a kinetic model for the description of polycondensation of such monomers, the necessity arises to take account of the substitution effects whereas the polycondensation of the majority of monomers of the first type can be fairly described by the ideal kinetic model. The latter, due to its simplicity and experimental verification for many systems, is currently the most commonly accepted in macromolecular chemistry of polycondensation processes. [Pg.187]

Beta/montmorillonite composite was prepared under dynamic hydrothermal conditions. Firstly, montmorillonite calcined at 800 °C were added to a diluted solution of sodium hydroxide, potassium chloride and TEAOH in distilled water and the resulting mixture was vigorously stirred for 1 h secondly, silica sol was added into the above uniform mixture to allow at least 3 h stirring finally, the gel was moved into stainless steel autoclaves (1L) and heated at 413 K for 48 h. The samples were characterized by XRD, N2 adsorption-desorption, FT-IR and SEM-EDS. The catalytic assessment experiments were carried out in a flowing-type apparatus designed for continuous operation. [Pg.137]

ESI(+), however, mainly produced the [M]+ ions at mlz 599 as well as a smaller number of dealkylated ions [M — CH2]+ at 585 (cf. Fig. 2.12.7), whereas ESI(—) predominantly produced the mlz 583 [M — H—CH3] ion, which was also found under APCI(—) conditions. This compound was the first type of cationic surfactants that could be ionised in the negative mode, even though it contained ammonium nitrogen [37]. [Pg.396]

Two types of subnucleosomal particles which retain many, if not all, of the properties of the intact nucleosome have been identified. The first type contains only H3 and H4, either as a tetramer (Bina-Stein and Simpson, 1977) or an octamer (Simon et al., 1978 Stockley and Thomas, 1979), while the second contains all core histones, each lacking up to 30 amino-terminal residues which have been digested away by trypsin (Whitlock and Simpson, 1977). The fact that other subnucleosomal particles have not been isolated does not necessarily mean that they cannot exist it indicates only that the proper reconstitution or dissociation conditions have not been found. Nevertheless, results to date point to H3-H4 on the one hand, and the trypsin-resistant carboxy-terminal regions of all the core histones on the other hand, as playing controlling structural roles in the formation of the nucleosome and the consequent folding of the DNA. [Pg.29]

An example of the first type of study is the cationic pol erization of alkenes and heterocyclic monomers in the presence of 2-alWlfurans. As discussed above, electrophilic substitution at C5 is quite facile with these compounds and one can therefore prepare monofunctional oligomers bearing a furanic end-group. By a judicious choice of experimental conditions this transfer reaction will predominate over all other chain-breaking events and virtually all the chains will have the same terminal structure, i.e. a 5-oligomer-2-al lfuran. Structure 32 illustrates this principle with isobutyl vinyl ether oligomers capped by 2-methylfuran ... [Pg.207]

Depending on the reaction conditions, alkenes may undergo either of two types of catalytic polymerization. The products of the first type, which may be termed true polymerization, consist of alkenes having molecular weights which are integral multiples of the monomer alkene. The second type, conjunct polymerization, yields a complex mixture of alkanes, alkenes, alkadienes, cycloalkanes, cycloalkenes, cycloalkadienes, and, in some cases, aromatic hydrocarbons the products do not necessarily have a number of carbon atoms corresponding to an integral multiple of the monomer. [Pg.22]

Next, the applications have to be validated and placed into standardized forms. Validation should consist of two steps. First, simulated data sets of aerosol properties should be generated from pre-selected source contributions as did Watson in his simulation studies of the chemical mass balance method. These data should be perturbed with the types of uncertainties expected under field conditions. The types of sources and their contributions predicted by the receptor model application should be compared with the known source model values and the extent of perturbation tolerable should be assessed. [Pg.102]

The distinction between these two types of weapons is blurred because they are combined in almost all advanced modern weapons. For example, a smaller fission bomb is first used to create necessary conditions of high temperature and pressure which are required for fusion. Similarly, fusion elements may also be present in the core of fission devices as well because they generate additional neutrons which increase efficiency of the fission reaction. Further, most of the fusion weapons derive substantial portion of their energy from a final stage of fissioning which is facilitated by the fusion reactions. The simplest nuclear weapons are pure fission bombs. They were the first type of nuclear weapons built during the American Manhattan Project and are considered as a building block for all advanced nuclear weapons. [Pg.56]

The most common example of the first type is the dissolving of insoluble salts of weak acids by strong acids. Many hydroxides, carbonates, sulfides, phosphates, borates, oxalates, and salts of other weak acids may be dissolved by strong acids, even though their solubility in water is extremely low. In the following problems, we consider two common questions "How much precipitate will dissolve under certain conditions " and "What conditions are needed to totally dissolve a given amount of precipitate "... [Pg.380]

Acid-labile linkers are the oldest and still the most commonly used linkers for carboxylic acids. Most are based on the acidolysis of benzylic C-O bonds. Benzyl esters cleavable under acidic conditions were the first type of linker to be investigated in detail. The reason for this was probably the initial choice of polystyrene as an insoluble support for solid-phase synthesis [13]. Polystyrene-derived benzyl esters were initially prepared by the treatment of partially chloromethylated polystyrene with salts of carboxylic acids (Figure 3.3). [Pg.41]

Idealized Reactor with Progressive Mixing. A reactor system of the first type under steady state flow conditions may be described by an expression, as follows, where the number of moles of constituent I converted in an infinitesimal volume, dV, would be given by... [Pg.26]


See other pages where Conditions first type is mentioned: [Pg.188]    [Pg.111]    [Pg.266]    [Pg.391]    [Pg.259]    [Pg.36]    [Pg.253]    [Pg.1038]    [Pg.158]    [Pg.387]    [Pg.11]    [Pg.96]    [Pg.194]    [Pg.268]    [Pg.190]    [Pg.152]    [Pg.169]    [Pg.238]    [Pg.231]    [Pg.258]    [Pg.172]    [Pg.241]    [Pg.151]    [Pg.284]    [Pg.130]    [Pg.70]    [Pg.236]    [Pg.186]    [Pg.21]    [Pg.28]    [Pg.512]    [Pg.259]    [Pg.25]    [Pg.286]    [Pg.49]    [Pg.242]    [Pg.26]    [Pg.1006]   
See also in sourсe #XX -- [ Pg.514 , Pg.516 ]




SEARCH



First conditions

© 2024 chempedia.info