Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional distillation condensers

Fit the flask with a 100° thermometer and a water-condenser, and distil the ethyl iodide carefully from a water-bath, collecting the fraction which distils between 68° and 73°. Yield, about 24 g. [Pg.107]

Filter the dried ethereal solution, and then distil off the ether from a small flask, using precisely similar apparatus and the same method as those described in the preparation of aniline (Fig. 64, p. 163 see also Fig. 23(E), p. 45) and observing the same precautions. When the ether has been removed, fit the distilling-flask to a short air-condenser, and distil the benzonitrile, collecting the fraction boiling between 187" and 191°. Yield, 16-5 g. (16 ml.). [Pg.192]

Place 80 g, of hydroxylamine sulphate (or 68-5 g. of the hydrochloride), 25 g. of hydrated sodium acetate, and 100 ml. of water in a 500 ml. flask fitted with a stirrer and a reflux water-condenser, and heat the stirred solution to 55-60°. Run in 35 g (42 nil,) of -hexyl methyl ketone, and continue the heating and vigorous stirring for ij hours. (The mixture can conveniently be set aside overnight after this stage.) Extract the oily oxime from the cold mixture twice with ether. Wash the united ethereal extract once with a small quantity of water, and dry it with sodium sulphate. Then distil off the ether from the filtered extract, preferably using a distillation flask of type shown in Fig. 41 (p. 65) and of ca, 50 ml, capacity, the extract being run in as fast as the ether distils, and then fractionally distil the oxime at water-pump pressure. Collect the liquid ketoxime, b.p. 110-111713 mm. Yield, 30-32 g. [Pg.225]

Bromoform. Commercial bromoform should be shaken thoroughly with water, separated, dried over powdered anhydrous sodium sulphate and then fractionally distilled under reduced pressure using a water-condenser. It should be stored in a dark cupboard. It is an excellent solvent, has the advantage of a high Constant, and very seldom causes association of the solute. [Pg.435]

Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of... Fig. II, 17, 2 illustrates a fractional distillation unit f for use with glass helices. The column is provided with an electrically-heated jacket the resistance shown in the Figure may be replaced by a variable transformer. The still head is of the total-condensation variable take-off type aU the vapour at the top of the column is condensed, a portion of the condensate is returned to the column by means of the special stopcock (permitting of...
Fractional distillation under diminished pressure.—A 5-25 ml. Claisen flask (with pear-shaped bulb) provided with a fractionating side arm (Fig. II, 24, 4r-5) and attached to a Liebig s condenser and a Perkin triangle (Fig. II, 20, 1 or II, 20, 2 volume of receiver ca. 10 ml.) wUl be found to have wide apphcation. [Pg.1105]

There are two methods available for aroma recovery. In one method, a portion of the water is stripped from the juice prior to concentration and fractionally distilled to recover a concentrated aqueous essence solution. Apple juice requires 10% water removal, peach 40%, and Concord grape 25—30% to remove volatile flavor as an essence. Fractional distillation affords an aqueous essence flavor solution of 100—200-fold strength, which means the essence is 100 to 200 times more concentrated in flavor than the starting juice. A second method of essence recovery is to condensate the volatiles from the last effect of the evaporator they are enriched in volatile flavor components (18). [Pg.573]

If a waste contains a mixture of volatile components that have similar vapor pressures, it is more difficult to separate these components and continuous fractional distillation is required. In this type of distillation unit (Fig. 4), a packed tower or tray column is used. Steam is introduced at the bottom of the column while the waste stream is introduced above and flows downward, countercurrent to the steam. As the steam vaporizes the volatile components and rises, it passes through a rectification section above the waste feed. In this section, vapors that have been condensed from the process are refluxed to the column, contacting the rising vapors and enriching them with the more volatile components. The vapors are then collected and condensed. Organics in the condensate may be separated from the aqueous stream after which the aqueous stream can be recycled to the stripper. [Pg.161]

Reversible Processes. Distillation is an example of a theoretically reversible separation process. In fractional distillation, heat is introduced at the bottom stiUpot to produce the column upflow in the form of vapor which is then condensed and turned back down as Hquid reflux or column downflow. This system is fed at some intermediate point, and product and waste are withdrawn at the ends. Except for losses through the column wall, etc, the heat energy spent at the bottom vaporizer can be recovered at the top condenser, but at a lower temperature. Ideally, the energy input of such a process is dependent only on the properties of feed, product, and waste. Among the diffusion separation methods discussed herein, the centrifuge process (pressure diffusion) constitutes a theoretically reversible separation process. [Pg.75]

The ammonia-water absorption system was extensively used until the fifties when the LiBr-water combination became popular. Figure 11-103 shows a simplified ammonia-water absorption cycle. The refrigerant is ammonia, and the absorbent is dilute aqueous solution of ammonia. Ammonia-water systems differ from water-lithium bromide equipment to accommodate major differences Water (here absorbent) is also volatile, so the regeneration of weak water solution to strong water solution is a fractional distillation. Different refrigerant (ammonia) causes different, much higher pressures about 1100-2100 kPa absolute in condenser. [Pg.1119]

The solution of sodium methyl sulfide in absolute alcohol is transferred to a 3-I. three-necked flask, which is placed on a steam bath and fitted with a dropping funnel, a reflux condenser, and a mechanical stirrer. The solution is heated until the alcohol begins to boil. Heating is then discontinued and 302 g. (3.7s moles) of ethylene chlorohydrin (Note 5) is added dropwise with efficient stirring over a period of about two hours (Note 6). The reaction mixture is concentrated by distilling as much of the alcohol as possible on the steam bath. The mixture is then allowed to cool and the sodium chloride removed by filtration. The flask is rinsed, and the sodium chloride washed with three loo-cc. portions of 95 per cent alcohol. The combined filtrate and washings are concentrated on the steam bath under reduced pressure until no further distillate passes over. The residue is then transferred to a modified Claisen flask (Org. Syn. Coll. Vol. i, 125) and fractionally distilled under reduced pressure. The yield is 238-265 g. (74-82 per cent of the theoretical amount based on the sodium used) of a product boiling at 68-7o°/20 mm. [Pg.55]

One of the most important operations in a refinery is the initial distillation of the crude oil into its various boiling point fractions. Distillation involves the heating, vaporization, fractionation, condensation, and cooling of feedstocks. This subsection discusses the atmospheric and vacuum distillation processes which when used in sequence result in lower costs and higher efficiencies. This subsection also discusses the important first step of desalting the crude oil prior to distillation. [Pg.83]

The term still is applied only to the vessel in which liquids are boiled during distillation, but the term is sometimes applied to the entire apparatus, including the fractionating column, the condenser, and the receiver in which the distillate is collected. If a water and alcohol distillate is returned from the condenser and made to drip down through a long column onto a series of plates, and if the vapor, as it rises to the condenser, is made to bubble through this liquid at each plate, the vapor and liquid will interact so that some of the water in the vapor condenses and some of the alcohol in the liquid vaporizes. The interaction at each plate is equivalent to a redistillation. This process is referred to by several names in the industry namely rectification, fractionation, or fractional distillation. [Pg.164]

To obtain a low flash zone pressure, the number of plates in the upper section of the vacuum pipe still is reduced to the minimum necessary to provide adequate heat transfer for condensing the distillate with the pumparound streams. A section of plates is included just above the flash zone. Here the vapors rising from the flash zone are contacted with reflux from the product drawoff plate. This part of the tower, called the wash section, serves to remove droplets of pitch entrained in the flash zone and also provides a moderate amount of fractionation. The flash zone operates at an absolute pressure of 60-90 mm Hg. [Pg.79]

N2O4 is best prepared by thermal decomposition of rigorously dried Pb(N03)2 in a steel reaction vessel, followed by condensation of the effluent gases and fractional distillation ... [Pg.456]


See other pages where Fractional distillation condensers is mentioned: [Pg.9]    [Pg.9]    [Pg.144]    [Pg.25]    [Pg.45]    [Pg.110]    [Pg.116]    [Pg.176]    [Pg.190]    [Pg.220]    [Pg.233]    [Pg.300]    [Pg.178]    [Pg.327]    [Pg.352]    [Pg.372]    [Pg.459]    [Pg.829]    [Pg.24]    [Pg.209]    [Pg.419]    [Pg.406]    [Pg.326]    [Pg.155]    [Pg.179]    [Pg.9]    [Pg.283]    [Pg.118]    [Pg.67]    [Pg.258]    [Pg.204]    [Pg.204]    [Pg.204]    [Pg.218]    [Pg.138]    [Pg.604]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Distillation condenser

Distillation fractional

Distillation fractions

Fractional condensation

© 2024 chempedia.info