Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation convective

The sun warms the layer of air closest to the ground, and the heated air masses are expanded and forced upwards. As this happens, the air cools down and the water vapor retained in the air condenses. Convection flows of lengthy duration can induce cloud formations, leading to short, intensive precipitation. In the alpine region this process occurs primarily in the summer, in the form of heavy thunder-storm-induced rain, particularly if the atmospheric conditions are unstable (cold over warm, Fig. 2c [8]). [Pg.21]

Heat-transfer coefficient in condensation Mean condensation heat-transfer coefficient for a single tube Heat-transfer coefficient for condensation on a horizontal tube bundle Mean condensation heat-transfer coefficient for a tube in a row of tubes Heat-transfer coefficient for condensation on a vertical tube Condensation coefficient from Boko-Kruzhilin correlation Condensation heat transfer coefficient for stratified flow in tubes Local condensing film coefficient, partial condenser Convective boiling-heat transfer coefficient... [Pg.784]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

The steam generator is a balanced draft, controlled circulation, multichamber unit which incorporates NO control and final burnout of the fuel-rich MHD combustion gases. The MHD generator exhaust is cooled in a primary radiant chamber from about 2310 to 1860 K in two seconds, and secondary air for afterburning and final oxidation of the gas is introduced in the secondary chamber where seed also condenses. Subsequent to afterburning and after the gas has been cooled down sufftciendy to soHdify condensed seed in the gas, the gas passes through the remaining convective sections of the heat recovery system. [Pg.425]

Incorporation of a feed gas saturator cod in the convection section of the primary reformer allows for 100% vaporization of the process condensate. The steam is used as process steam in the reformer. [Pg.353]

For example, vaporization may occur as a result of heat absorbed, by radiation and convection, at the surface of a pool of hquid or as a result of heat absorbed by natural convect ion from a hot wall beneath the disengaging surface, in which case the vaporization takes place when the superheated liquid reaches the pool surface. Vaporization also occurs from falling films (the reverse or condensation) or from the flashing of hquids superheated by forced convec tion under pressure. [Pg.568]

For subcooling, a liquid inventory may be maintained in the bottom end of the shell by means of a weir or a hquid-level-controUer. The subcoohng heat-transfer coefficient is given by the correlations for natural convection on a vertical surface [Eqs. (5-33 ), (5-33Z )], with the pool assumed to be well mixed (isothermal) at the subcooled condensate exit temperature. Pressure drop may be estimated by the shell-side procedure. [Pg.1042]

Open Tube Sections (Air Cooled) Plain or finned tubes No shell required, only end heaters similar to water units. Condensing, high level heat transfer. Transfer coefficient is low, if natural convection circulation, but is improved with forced air flow across tubes. 0.8-1.8... [Pg.25]

A temperature profile of vapor condensing in the presence of a noncondensable gas on a tube wall, as shown in Figure 16 indicates the resistance to heat flow. Heat is transferred in two ways from the vapor to the interface. The sensible heat is removed in cooling the vapor from t to t, at the convection gas cooling rate. The latent heat is removed only after the condensable vapor has been able to diffuse through the noncondensable part to reach the tube wall. This means the latent heat transfer is governed by mass transfer laws. [Pg.58]

It is advantageous to use a low-retentivity carbon to enable the adsorbate to be stripped out easily. When empirical data are not available, the following heat requirements have to be taken into consideration (1) heat to the adsorbent and vessel, (2) heat of adsorption and specific heat of adsorbate leaving the adsorbent, (3) latent and specific heat of water vapor accompanying the adsorbate, (4) heat in condensed, indirect steam, (5) radiation and convection heat losses. [Pg.294]

GASFLOW models geometrically complex containments, buildings, and ventilation systems with multiple compartments and internal structures. It calculates gas and aerosol behavior of low-speed buoyancy driven flows, diffusion-dominated flows, and turbulent flows dunng deflagrations. It models condensation in the bulk fluid regions heat transfer to wall and internal stmetures by convection, radiation, and condensation chemical kinetics of combustion of hydrogen or hydrocarbon.s fluid turbulence and the transport, deposition, and entrainment of discrete particles. [Pg.354]

It is discovered that in the cooling tower the water moving downward from the jets changes its direction to upward after drop formation. There is an effective heat transfer process when the drops move upward heat transfers from the outlet air to the drops through convection and condensation. [Pg.99]

If steam condenses on a surface, there is no boundary layer the resistance to heat flow is due to scale, metal thickness, and the condensed liquid layer, resulting in a high heat transfer factor. A thin layer of air or other noncondensing gas forms at the surface through which the steam diffuses. The heat transfer factor diminishes rapidly but is considerably higher than in dry convection. [Pg.105]

Clouds A mass of droplets of water or other liquids remaining at a more or less constant height. Clouds are usually formed by condensation after warm moist air rises by convection into cooler regions and cools by expansion to below its dew point. [Pg.1422]

Determine the tube-side film coefficient for convection or condensation as required, by methods previously described. [Pg.174]

Design Procedure for Shell-Side Condensers and Shell-Side Condensation with Gas Cooling of Condensables, Fluid-Fluid Convection Heat Exchange... [Pg.224]

A heat transfer comparison is made in Figure 10-157. The plate and frame designs are used in convection, condensing, and some evaporation/boiling applications. [Pg.234]

Thermal conductivity increases with temperature. The insulating medium (the air or gas within the voids) becomes more excited as its temperature is raised, and this enhances convection within or between the voids, thus increasing heat flow. This increase in thermal conductivity is generally continuous for air-filled products and can be mathematically modeled (see Figure 11.3). Those insulants that employ inert gases as their insulating medium may show sharp changes in thermal conductivity, which may occur because of gas condensation. However, this tends to take place at sub-zero temperatures. [Pg.118]

It follows from (1) that the more negative metal, at a bimetallic junction, can be subject to more aggravated attack because of this lowered cathodic polarisation. In part, this may result from the greater ease of replenishment of dissolved oxygen under conditions where the ratio of surface area to electrolyte volume is very high. Rosenfel d has also produced evidence to show that rapid convective mixing in the condensed layer, under conditions of lowered relative humidity which permit rapid evaporation, further hastens the arrival of dissolved oxygen at the cathode and results in an additional... [Pg.230]

Where heat transfer is taking place at the saturation temperature of a fluid, evaporation or condensation (mass transfer) will occur at the interface, depending on the direction of heat flow. In such cases, the convective heat transfer of the fluid is accompanied by conduction at the surface to or from a thin layer in the liquid state. Since the latent heat and density of fluids are much greater than the sensible heat and density of the vapour, the rates of heat transfer are considerably higher. The process can be improved by shaping the heat exchanger face (where this is a solid) to improve the drainage of condensate or the escape of bubbles of vapour. The total heat transfer will be the sum of the two components. [Pg.12]

Above this size, the flow of air over the condenser surface will be by forced convection, i.e. fans. The high thermal resistance of the boundary layer on the air side of the heat exchanger leads to the use, in all but the very smallest condensers, of an extended surface. This takes the form of plate fins mechanically bonded onto the refrigerant tubes in most commercial patterns. The ratio of outside to inside surface will be between 5 1 and 10 1. [Pg.65]


See other pages where Condensation convective is mentioned: [Pg.496]    [Pg.502]    [Pg.502]    [Pg.225]    [Pg.96]    [Pg.452]    [Pg.436]    [Pg.547]    [Pg.553]    [Pg.1044]    [Pg.1045]    [Pg.378]    [Pg.21]    [Pg.270]    [Pg.1091]    [Pg.1092]    [Pg.53]    [Pg.133]    [Pg.218]    [Pg.463]    [Pg.90]    [Pg.999]    [Pg.123]    [Pg.271]    [Pg.275]    [Pg.695]    [Pg.695]    [Pg.696]    [Pg.13]   
See also in sourсe #XX -- [ Pg.17 , Pg.100 ]




SEARCH



Condensation forced convection

Condensation, convective coefficient

Convection effect, condensation

Free convection condensation

Laminar forced convection condensation

© 2024 chempedia.info