Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration cells potentials

Of course, when we add the two half reactions we get E° = 0. If the concentrations were equal on both sides, the concentration cell potential would be zero. You can use the Nemst equation to find the potential for a concentration cell. (If you need the Nemst equation, the MCAT will give it to you.) It is much more likely that the MCAT will ask you a qualitative question like "In which direction will current flow in the concentration cell " In this case, we must think about nature s tendency for balance nature wants to create the greatest entropy. The more concentrated side will try to become less concentrated, and electrons will flow accordingly. [Pg.120]

Overpotentials associated with concentration variations in the electrolyte are called concentration overpotentials (t) ) When the concentration near an electrode surface differs from that in the bulk, a concentration cell is established to equalize the two concentrations. Also, when there is diffusion of one ionic species (anion or cation) in the electrolyte due to a spatial variation in its concentration, a diffusion potential will be established to slow down the movement of the diffusing ion and speed up the movement of the oppositely charged ion so that electroneutrality in the solution is maintained. For the case where the electrolyte conductivity is assumed to be a weak function of concentration, the concentration overpotential can be expressed as the sum of a concentration cell potential and diffusion potential in the following way [4] ... [Pg.1765]

In fact, some care is needed with regard to this type of concentration cell, since the assumption implicit in the derivation of A2.4.126 that the potential in the solution is constant between the two electrodes, caimot be entirely correct. At the phase boundary between the two solutions, which is here a semi-pemieable membrane pemiitting the passage of water molecules but not ions between the two solutions, there will be a potential jump. This so-called liquid-junction potential will increase or decrease the measured EMF of the cell depending on its sign. Potential jumps at liquid-liquid junctions are in general rather small compared to nomial cell voltages, and can be minimized fiirther by suitable experimental modifications to the cell. [Pg.602]

In potentiometry, the concentration of analyte in the cathodic half-cell is generally unknown, and the measured cell potential is used to determine its concentration. Thus, if the potential for the cell in Figure 11.5 is measured at -1-1.50 V, and the concentration of Zn + remains at 0.0167 M, then the concentration of Ag+ is determined by making appropriate substitutions to equation 11.3... [Pg.469]

Another problem is that the Nernst equation is a function of activities, not concentrations. As a result, cell potentials may show significant matrix effects. This problem is compounded when the analyte participates in additional equilibria. For example, the standard-state potential for the Fe "/Fe " redox couple is +0.767 V in 1 M 1TC104, H-0.70 V in 1 M ITCl, and -H0.53 in 10 M ITCl. The shift toward more negative potentials with an increasing concentration of ITCl is due to chloride s ability to form stronger complexes with Fe " than with Fe ". This problem can be minimized by replacing the standard-state potential with a matrix-dependent formal potential. Most tables of standard-state potentials also include a list of selected formal potentials (see Appendix 3D). [Pg.470]

Plot of cell potential versus the log of the analyte s concentration In the presence of a fixed concentration of Interferent, showing the determination of the selectivity coefficient. [Pg.477]

The membrane also responds to the concentration of with the cell potential given as... [Pg.479]

If a mixture of an insoluble silver salt and Ag2S is used to make the membrane, then the membrane potential also responds to the concentration of the anion of the added silver salt. Thus, pellets made from a mixture of Ag2S and AgCl can serve as a Ck ion-selective electrode, with a cell potential of... [Pg.480]

Membranes fashioned from a mixture of Ag2S with CdS, CuS, or PbS are used to make ion-selective electrodes that respond to the concentration of Cd +, Cu +, or Pb +. In this case the cell potential is... [Pg.480]

The change in the concentration of H3O+ is monitored with a pH ion-selective electrode, for which the cell potential is given by equation 11.9. The relationship between the concentration of H3O+ and CO2 is given by rearranging the equilibrium constant expression for reaction 11.10 thus... [Pg.484]

The potentiometric determination of an analyte s concentration is one of the most common quantitative analytical techniques. Perhaps the most frequently employed, routine quantitative measurement is the potentiometric determination of a solution s pH, a technique considered in more detail in the following discussion. Other areas in which potentiometric applications are important include clinical chemistry, environmental chemistry, and potentiometric titrations. Before considering these applications, however, we must first examine more closely the relationship between cell potential and the analyte s concentration, as well as methods for standardizing potentiometric measurements. [Pg.485]

Activity Versus Concentration In describing metallic and membrane indicator electrodes, the Nernst equation relates the measured cell potential to the concentration of analyte. In writing the Nernst equation, we often ignore an important detail—the... [Pg.485]

The concentration of Ca + in a water sample was determined by the method of external standards. The ionic strength of the samples and standards was maintained at a nearly constant level by making each solution 0.5 M in KNO3. The measured cell potentials for the external standards are shown in the following table. [Pg.487]

Substituting the cell potential for the sample gives the concentration of Ca + as 2.17 X 10 M. Note that the slope of the calibration curve is slightly different from the ideal value of 0.05916/2 = 0.02958. [Pg.487]

Calculate the molar concentration for the underlined component in the following cell if the cell potential is measured at +0.294 V... [Pg.535]

Ice formation is both beneficial and detrimental. Benefits, which include the strengthening of food stmctures and the removal of free moisture, are often outweighed by deleterious effects that ice crystal formation may have on plant cell walls in fmits and vegetable products preserved by freezing. Ice crystal formation can result in partial dehydration of the tissue surrounding the ice crystal and the freeze concentration of potential reactants. Ice crystals mechanically dismpt cell stmctures and increase the concentration of cell electrolytes which can result in the chemical denaturation of proteins. Other quaHty losses can also occur (12). [Pg.459]

Group 12 (IIB) Perchlorates. The zinc perchlorate [13637-61 -17, cadmium perchlorate [13760-37-7] mercury(I) perchlorate [13932-02-0] and mercury(II) perchlorate [7616-83-3] all exist. Cell potential measurements show that zinc and cadmium perchlorates are completely dissociated in concentrations up to 0.1 molar in aqueous solutions (47—49). Mercurous perchlorate forms a tetrahydrate that can be readily converted to the dihydrate on heating to above 36°C (50). [Pg.66]

The potential of the reaction is given as = (cathodic — anodic reaction) = 0.337 — (—0.440) = +0.777 V. The positive value of the standard cell potential indicates that the reaction is spontaneous as written (see Electrochemical processing). In other words, at thermodynamic equihbrium the concentration of copper ion in the solution is very small. The standard cell potentials are, of course, only guides to be used in practice, as rarely are conditions sufftciendy controlled to be called standard. Other factors may alter the driving force of the reaction, eg, cementation using aluminum metal is usually quite anomalous. Aluminum tends to form a relatively inert oxide coating that can reduce actual cell potential. [Pg.563]

Attack associated with nonuniformity of the aqueous environments at a surface is called concentration cell corrosion. Corrosion occurs when the environment near the metal surface differs from region to region. These differences create anodes and cathodes (regions differing in electrochemical potential). Local-action corrosion cells are established, and anodic areas lose metal by corrosion. Shielded areas are particularly susceptible to attack, as they often act as anodes (Fig. 2.1). Differences in concentration of dissolved ions such as hydrogen, oxygen, chloride, sulfate, etc. eventually develop between shielded and nearby regions. [Pg.9]

Stress corrosion can arise in plain carbon and low-alloy steels if critical conditions of temperature, concentration and potential in hot alkali solutions are present (see Section 2.3.3). The critical potential range for stress corrosion is shown in Fig. 2-18. This potential range corresponds to the active/passive transition. Theoretically, anodic protection as well as cathodic protection would be possible (see Section 2.4) however, in the active condition, noticeable negligible dissolution of the steel occurs due to the formation of FeO ions. Therefore, the anodic protection method was chosen for protecting a water electrolysis plant operating with caustic potash solution against stress corrosion [30]. The protection current was provided by the electrolytic cells of the plant. [Pg.481]

Concentration cell corrosion occurs in an environment in which an electrochemical cell is affected by a difference in concentrations in the aqueous medium. The most common form is crevice corrosion. If an oxygen concentration gradient exists (usually at gaskets and lap joints), crevice corrosion often occurs. Larger concentration gradients cause increased corrosion (due to the larger electrical potentials present). [Pg.14]

Differential Aeration Cells. This type of concentration cell is more important in practice than is the salt concentration cell. The cell may be made from two electrodes of the same metal (i.e., iron), immersed completely in dilute sodium chloride solution (Figure 4-433). The electrolyte around one electrode (cathode) is thoroughly aerated by bubbling air. Simultaneously the electrolyte around the other electrode is deaerated by bubbling nitrogen. The difference in oxygen concentration causes a difference in potential. This, in turn, initiates the flow of current. This type of cell exists in several forms. Some of them are as follows [188]. [Pg.1276]

Fig. 1.21 Concentration cell in which flAg+.il < Ag+.i that charge transfer occurs spontaneously and proceeds until the activities are equal (fj is the liquid junction potential at the sintered glass plug that is used to minimise mixing of the two solutions)... Fig. 1.21 Concentration cell in which flAg+.il < Ag+.i that charge transfer occurs spontaneously and proceeds until the activities are equal (fj is the liquid junction potential at the sintered glass plug that is used to minimise mixing of the two solutions)...
These cells are unlikely to have the same potential so that a net potential will exist and one metal will corrode preferentially and the other will tend to be protected. However, although this situation may occur in practice it is difficult to see how the explanation given by Savory and Packman is tenable. In action, accelerated corrosion can occur on an individual metal, by the action of a concentration cell... [Pg.969]

The precautions generally applicable to the preparation, exposure, cleaning and assessment of metal test specimens in tests in other environments will also apply in the case of field tests in the soil, but there will be additional precautions because of the nature of this environment. Whereas in the case of aqueous, particularly sea-water, and atmospheric environments the physical and chemical characteristics will be reasonably constant over distances covering individual test sites, this will not necessarily be the case in soils, which will almost inevitably be of a less homogeneous nature. The principal factors responsible for the corrosive nature of soils are the presence of bacteria, the chemistry (pH and salt content), the redox potential, electrical resistance, stray currents and the formation of concentration cells. Several of these factors are interrelated. [Pg.1076]

Since concentration variations have measurable effects on the cell voltage, a measured voltage cannot be interpreted unless the cell concentrations are specified. Because of this, chemists introduce the idea of standard-state. The standard state for gases is taken as a pressure of one atmosphere at 25°C the standard state for ions is taken as a concentration of 1 M and the standard state of pure substances is taken as the pure substances themselves as they exist at 25°C. The half-cell potential associated with a halfreaction taking place between substances in their standard states is called ° (the superscript zero means standard state). We can rewrite equation (37) to include the specifications of the standard states ... [Pg.210]

H+], calculation of, 192, see also Hydrogen ion Haber, Fritz, 151 Haber process, 140, 150 Hafnium, oxidation number, 414 Haldane, J. B. S., 436 Half-cell potentials effect of concentration, 213 measuring, 210 standard, 210 table of, 211, 452 Half-cell reactions, 201 Half-life, 416 Half-reaction, 201 balancing, 218 potentials, 452 Halides... [Pg.459]

An electrode potential varies with the concentration of the ions in the solution. Hence two electrodes of the same metal, but immersed in solutions containing different concentrations of its ions, may form a cell. Such a cell is termed a concentration cell. The e.m.f. of the cell will be the algebraic difference of the two potentials, if a salt bridge be inserted to eliminate the liquid-liquid junction potential. It may be calculated as follows. At 25 °C ... [Pg.63]

One way of overcoming the liquid junction potential problem is to replace the reference electrode by an electrode composed of a solution containing the same cation as in the solution under test, but at a known concentration, together with a rod of the same metal as that used in the indicator electrode in other words we set up a concentration cell (Section 2.29). The activity of the metal ion in the solution under test is given by... [Pg.549]

Such changes in the pH are sensed by the inner glass electrode. The overall cell potential is thus determined by the carbon dioxide concentration in the sample ... [Pg.189]

As a reaction proceeds toward equilibrium, the concentrations of its reactants and products change and AG approaches zero. Therefore, as reactants are consumed in a working electrochemical cell, the cell potential also decreases until finally it reaches zero. A dead battery is one in which the cell reaction has reached equilibrium. At equilibrium, a cell generates zero potential difference across its electrodes and the reaction can no longer do work. To describe this behavior quantitatively, we need to find how the cell emf varies with the concentrations of species in the cell. [Pg.626]

An important application of the Nernst equation is the measurement of concentration. In a concentration cell, the two electrodes are identical except for their concentrations. For such a cell, E° = 0 and at 25°C the potential corresponding to the cell reaction is related to Q by E = —(0.025693 V//z) In Q. For example, a concentration cell having two Ag+/Ag electrodes is... [Pg.627]

Self-Test 12.12A Calculate the molar concentration of Y1H in a saturated solution of YF3 by using a cell constructed with two yttrium electrodes. The electrolyte in one compartment is 1.0 M Y(NO ),(aq). In the other compartment you have prepared a saturated solution of YF3. The measured cell potential is +0.34 V at 298 K. [Pg.628]


See other pages where Concentration cells potentials is mentioned: [Pg.108]    [Pg.602]    [Pg.462]    [Pg.466]    [Pg.474]    [Pg.477]    [Pg.477]    [Pg.479]    [Pg.487]    [Pg.490]    [Pg.499]    [Pg.20]    [Pg.10]    [Pg.68]    [Pg.48]    [Pg.455]    [Pg.1294]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Cell potentials

Cells concentrators

Concentration cell

Potential Concentration

© 2024 chempedia.info