Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computer-simulated reactions

From SCRP spectra one can always identify the sign of the exchange or dipolar interaction by direct exammation of the phase of the polarization. Often it is possible to quantify the absolute magnitude of D or J by computer simulation. The shape of SCRP spectra are very sensitive to dynamics, so temperature and viscosity dependencies are infonnative when knowledge of relaxation rates of competition between RPM and SCRP mechanisms is desired. Much use of SCRP theory has been made in the field of photosynthesis, where stnicture/fiinction relationships in reaction centres have been connected to their spin physics in considerable detail [, Mj. [Pg.1617]

Gray C G, Sainger Y S, Joslin C G, Cummings P T and Goldman S 1986 Computer simulation of dipolar fluids. Dependence of the dielectric constant on system size a comparative study of Ewald sum and reaction field approaches J. Chem. Phys. 85 1502-4... [Pg.2282]

Merz, K.M. Jr Computer simulation of enzymatic reactions. Curr. Opinion Struct. Biol. 3 (1993) 234-240. [Pg.32]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Studies on solvent effects on the endo-exo selectivity of Diels-Alder reactions have revealed the importance of hydrogen bonding interactions besides the already mentioned solvophobic interactions and polarity effects. Further evidence of the significance of the former interactions comes from computer simulations" and the analogy with Lewis-acid catalysis which is known to enhance dramatically the endo-exo selectivity (Section 1.2.4). [Pg.25]

With these kinetic data and a knowledge of the reactor configuration, the development of a computer simulation model of the esterification reaction is iavaluable for optimising esterification reaction operation (25—28). However, all esterification reactions do not necessarily permit straightforward mathematical treatment. In a study of the esterification of 2,3-butanediol and acetic acid usiag sulfuric acid catalyst, it was found that the reaction occurs through two pairs of consecutive reversible reactions of approximately equal speeds. These reactions do not conform to any simple first-, second-, or third-order equation, even ia the early stages (29). [Pg.375]

Computer Simulation of Biochemical Reactions with QM-MM Methods... [Pg.221]

Computer simulation techniques offer the ability to study the potential energy surfaces of chemical reactions to a high degree of quantitative accuracy [4]. Theoretical studies of chemical reactions in the gas phase are a major field and can provide detailed insights into a variety of processes of fundamental interest in atmospheric and combustion chemistry. In the past decade theoretical methods were extended to the study of reaction processes in mesoscopic systems such as enzymatic reactions in solution, albeit to a more approximate level than the most accurate gas-phase studies. [Pg.221]

For simulation on the IBM 360/65 computer, the reaction was represented as first order to oxygen, the limiting reactant, and by the usual Arrhenius form dependency on temperature. Since the changes here were rapid, various transport processes had significant roles. The following set of differential equations was used to describe the transient system ... [Pg.159]

Conclusions from the test problems are not limited by any means to methanol synthesis. These results have more general meaning. Other reactions also will be used to explain certain features of the subjects. Yet the programs for the test problem make it possible to simulate experiments on a computer. In turn, computer simulation of experiments by the reader makes the understanding of the experimental concepts in this book more profound and at the same time easier to grasp. [Pg.281]

Outer sphere electron transfer (e.g., [11-19,107,160-162]), ion transfer [10,109,163,164] and proton transfer [165] are among the reactions near electrodes and the hquid/liquid interface which have been studied by computer simulation. Much of this work has been reviewed recently [64,111,125,126] and will not be repeated here. All studies involve the calculation of a free energy profile as a function of a spatial or a collective solvent coordinate. [Pg.368]

Complementing these very well established approaches for the study of any scientific field, namely experiments and analytical theory, very recently, computer simulations have become a powerful tool for the study of a great variety of processes occurring in nature in general [4-6], as well as surface chemical reactions in particular [7]. Within this context, the aim of this chapter is not only to offer a critical overview of recent progress in the area of computer simulations of surface reaction processes, but also to provide an outlook of promising trends in most of the treated topics. [Pg.388]

The study of surface chemical reaction processes using computer simulation techniques is quite an active field of research. Within this context the Monte Carlo method emerges as a powerful tool which contributes to the... [Pg.429]

I. Jensen, H. C. Fogedby. Kinetic phase transitions in a surface-reaction model with diffusion Computer simulations and mean-field theory. Phys Rev A 2 1969-1975, 1990. [Pg.434]

G. Schulz, M. Martin. Computer simulations of pattern formation in ionconducting systems. Solid State Ionics, Diffusion and Reactions 101-103AM,... [Pg.925]

Many anodic oxidations involve an ECE pathway. For example, the neurotransmitter epinephrine can be oxidized to its quinone, which proceeds via cyclization to leukoadrenochrome. The latter can rapidly undergo electron transfer to form adrenochrome (5). The electrochemical oxidation of aniline is another classical example of an ECE pathway (6). The cation radical thus formed rapidly undergoes a dimerization reaction to yield an easily oxidized p-aminodiphenylamine product. Another example (of industrial relevance) is the reductive coupling of activated olefins to yield a radical anion, which reacts with the parent olefin to give a reducible dimer (7). If the chemical step is very fast (in comparison to the electron-transfer process), the system will behave as an EE mechanism (of two successive charge-transfer steps). Table 2-1 summarizes common electrochemical mechanisms involving coupled chemical reactions. Powerful cyclic voltammetric computational simulators, exploring the behavior of virtually any user-specific mechanism, have... [Pg.35]

The previous chapters taught us how to ask questions about specific enzymatic reactions. In this chapter we will attempt to look for general trends in enzyme catalysis. In doing so we will examine various working hypotheses that attribute the catalytic power of enzymes to different factors. We will try to demonstrate that computer simulation approaches are extremely useful in such examinations, as they offer a way to dissect the total catalytic effect into its individual contributions. [Pg.208]

Water has physical hemical properties that are very different from those of other solvents [1] and its role in enhancing the reactivity and selectivity of some organic reactions is still a debated question. Recent experimental studies [3e, 9] and computer simulations [10] seem to indicate, at least with respect to the rate enhancement of aqueous Diels Alder reactions, that the main effects are due to the enforced hydrophobic interactions and hydrogen bond interactions. [Pg.252]

In the computer simulations It was necessary to study reaction sequences more complex than those studied by Barkelew, which consequently led to rate functions having double rather than single concentration dependence. Numerous results from both theoretical and computational analyses. Including the effects of e and Tr, have been described elsewhere (see especially Figure 8 of reference 1). [Pg.27]

The fixed variables used in the computer simulation are shown in Table 1 along with the kinetic rate constants for the polymerization reactions. [Pg.224]

REACTION AND REACTOR PARAMETERS USED IN THE COMPUTER SIMULATION... [Pg.225]

Enzyme reactions, like all chemical events, are dynamic. Information coming to us from experiments is not dynamic even though the intervals of time separating observations may be quite small. In addition, much information is denied to us because of technological limitations in the detection of chemical changes. Our models would be improved if we could observe and record all concentrations at very small intervals of time. One approach to this information lies in the creation of a model in which we know all of the concentrations at any time and know something of the structural attributes of each ingredient. A class of models based on computer simulations, such as molecular dynamics, Monte Carlo simulations, and cellular automata, offer such a possibility. [Pg.140]

Levy (Chapter 6) has also explored the use of supercomputers to study detailed properties of biological macromolecule that are only Indirectly accessible to experiment, with particular emphasis on solvent effects and on the Interplay between computer simulations and experimental techniques such as NMR, X-ray structures, and vltratlonal spectra. The chapter by Jorgensen (Chapter 12) summarizes recent work on the kinetics of simple reactions In solutions. This kind of calculation provides examples of how simulations can address questions that are hard to address experimentally. For example Jorgensen s simulations predicted the existence of an Intermediate for the reaction of chloride Ion with methyl chloride In DMF which had not been anticipated experimentally, and they Indicate that the weaker solvation of the transition state as compared to reactants for this reaction In aqueous solution Is not due to a decrease In the number of hydrogen bonds, but rather due to a weakening of the hydrogen bonds. [Pg.8]

However, this is not so easy without the tertiary structure of the enzyme. The possible clues are the homology search with functionally resembling enzymes and computer simulation of the tert-structure of the enzyme. The characteristic features of AMDase are (i) the reaction proceeds via an enolate-type transition state, (ii) the cysteine residue plays an essential role and (iii) the reaction involves an inversion of configuration on the a-carbon of the carboxyl group. [Pg.318]


See other pages where Computer-simulated reactions is mentioned: [Pg.895]    [Pg.2255]    [Pg.2685]    [Pg.32]    [Pg.355]    [Pg.23]    [Pg.78]    [Pg.386]    [Pg.294]    [Pg.516]    [Pg.1504]    [Pg.204]    [Pg.931]    [Pg.428]    [Pg.429]    [Pg.944]    [Pg.381]    [Pg.224]    [Pg.318]    [Pg.31]    [Pg.339]   


SEARCH



Computational simulations

Computer simulation

REACTION SIMULATION

Reaction-limited aggregation computer simulation

Unimolecular reactions computer simulation

© 2024 chempedia.info