Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Computational methods calculations

Magnetic susceptibility can also be calculated by computational methods calculation by the B3LYP method correctly reproduces some of the trends in stability among the benzo[b]- and benzo[c]- derivatives of five-membered heterocycles. The benzenoid benzo[b]- isomers are much more stable compounds than the quinoid benzo[c] isomers. [Pg.722]

Of particular interest has been the study of the polymer configurations at the solid-liquid interface. Beginning with lattice theories, early models of polymer adsorption captured most of the features of adsorption such as the loop, train, and tail structures and the influence of the surface interaction parameter (see Refs. 57, 58, 62 for reviews of older theories). These lattice models have been expanded on in recent years using modem computational methods [63,64] and have allowed the calculation of equilibrium partitioning between a poly-... [Pg.399]

It was reahzed quite some decades ago that the amount of information accumulated by chemists can, in the long run, be made accessible to the scientific community only in electronic form in other words, it has to be stored in databases. This new field, which deals with the storage, the manipulation, and the processing of chemical information, was emerging without a proper name. In most cases, the scientists active in the field said they were working in "Chemical Information . However, as this term did not make a distinction between librarianship and the development of computer methods, some scientists said they were working in "Computer Chemistry to stress the importance they attributed to the use of the computer for processing chemical information. However, the latter term could easily be confused with Computational Chemistry, which is perceived by others to be more limited to theoretical quantum mechanical calculations. [Pg.4]

The classical introduction to molecular mechanics calculations. The authors describe common components of force fields, parameterization methods, and molecular mechanics computational methods. Discusses th e application of molecular mechanics to molecules comm on in organic,and biochemistry. Several chapters deal w ith thermodynamic and chemical reaction calculations. [Pg.2]

An N-atom molecular system may he described by dX Cartesian coordinates. Six independent coordinates (five for linear molecules, three fora single atom) describe translation and rotation of the system as a whole. The remaining coordinates describe the nioleciiUir configuration and the internal structure. Whether you use molecular mechanics, quantum mechanics, or a specific computational method (AMBER, CXDO. etc.), yon can ask for the energy of the system at a specified configuration. This is called a single poin t calculation. ... [Pg.299]

We have the makings of an iterative computer method. Start by assuming values for the matr ix elements and calculate electron densities (charge densities and bond orders). Modify the matr ix elements according to the results of the electron density calculations, rediagonalize using the new matrix elements to get new densities, and so on. When the results of one iteration are not different from those of the last by more than some specified small amount, the results are self-consistent. [Pg.249]

The primary reason for interest in extended Huckel today is because the method is general enough to use for all the elements in the periodic table. This is not an extremely accurate or sophisticated method however, it is still used for inorganic modeling due to the scarcity of full periodic table methods with reasonable CPU time requirements. Another current use is for computing band structures, which are extremely computation-intensive calculations. Because of this, extended Huckel is often the method of choice for band structure calculations. It is also a very convenient way to view orbital symmetry. It is known to be fairly poor at predicting molecular geometries. [Pg.33]

The most severe limitation of ah initio methods is the limited size of the molecule that can be modeled on even the largest computers. Semiempirical calculations can be used for large organic molecules, but are also too computation-intensive for most biomolecular systems. If a molecule is so big that a semiempirical treatment cannot be used elfectively, it is still possible to model its behavior avoiding quantum mechanics totally by using molecular mechanics. [Pg.49]

Recently, molecular dynamics and Monte Carlo calculations with quantum mechanical energy computation methods have begun to appear in the literature. These are probably some of the most computationally intensive simulations being done in the world at this time. [Pg.65]

It is possible to use computational techniques to gain insight into the vibrational motion of molecules. There are a number of computational methods available that have varying degrees of accuracy. These methods can be powerful tools if the user is aware of their strengths and weaknesses. The user is advised to use ah initio or DFT calculations with an appropriate scale factor if at all possible. Anharmonic corrections should be considered only if very-high-accuracy results are necessary. Semiempirical and molecular mechanics methods should be tried cautiously when the molecular system prevents using the other methods mentioned. [Pg.96]

There are quite a number of ways to effectively change the equation in an SCF calculation. These include switching computation methods, using level shifting, and using forced convergence methods. [Pg.194]

Simply doing electronic structure computations at the M, K, X, and T points in the Brillouin zone is not necessarily sufficient to yield a band gap. This is because the minimum and maximum energies reached by any given energy band sometimes fall between these points. Such limited calculations are sometimes done when the computational method is very CPU-intensive. For example, this type of spot check might be done at a high level of theory to determine whether complete calculations are necessary at that level. [Pg.267]

If these elements are included in an organic molecule, the choice of computational method can be made based on the organic system with deference to the exceptions listed in this section. If completely inorganic calculations are being performed, use a method that tends to correctly model the property of interest in organic systems. [Pg.286]

OPW (orthogonalized plane wave) a band-structure computation method P89 (Perdew 1986) a gradient corrected DFT method parallel computer a computer with more than one CPU Pariser-Parr-Pople (PPP) a simple semiempirical method PCM (polarized continuum method) method for including solvation effects in ah initio calculations... [Pg.366]

The dipole moment (A) of a molecule is the first moment of the elec tric charge density of a molecule. Paraffins have dipole moments of zero, while dipole moments of almost all hydrocarbons are small. McClellan lists many dipole moments. The computer method of Dixon and Jurs" is the most useful method for predicting dipole moments. Lyman et al. give other methods of calculation. [Pg.389]

Chemoinformatics (or cheminformatics) deals with the storage, retrieval, and analysis of chemical and biological data. Specifically, it involves the development and application of software systems for the management of combinatorial chemical projects, rational design of chemical libraries, and analysis of the obtained chemical and biological data. The major research topics of chemoinformatics involve QSAR and diversity analysis. The researchers should address several important issues. First, chemical structures should be characterized by calculable molecular descriptors that provide quantitative representation of chemical structures. Second, special measures should be developed on the basis of these descriptors in order to quantify structural similarities between pairs of molecules. Finally, adequate computational methods should be established for the efficient sampling of the huge combinatorial structural space of chemical libraries. [Pg.363]

The calculation of E] and X from computational methods is the focus here. Generally, the energetics of these quantities are separated into contributions from the inner and outer shells. For transfer between small molecules, the inner shell generally is defined as the entire solutes A and D, and the outer shell is generally defined as only the solvent. However, in a more practical approach for proteins, the inner shell is defined as only the redox site, which consists of the metal plus its ligands no further than atoms of the side chains that are directly coordinated to the metal, and the outer shell is defined as the rest of the protein plus the surrounding solvent. Thus... [Pg.394]

Edmister, W. C., Absorption and Stripping-factor Functions for Distillation Calculation by Manual- and Digital-computer Methods, A.I.Ch.E. Journal, June 1957. [Pg.100]


See other pages where Computational methods calculations is mentioned: [Pg.513]    [Pg.62]    [Pg.89]    [Pg.45]    [Pg.513]    [Pg.513]    [Pg.62]    [Pg.89]    [Pg.45]    [Pg.513]    [Pg.2051]    [Pg.381]    [Pg.66]    [Pg.474]    [Pg.36]    [Pg.198]    [Pg.16]    [Pg.625]    [Pg.157]    [Pg.84]    [Pg.482]    [Pg.159]    [Pg.38]    [Pg.1275]    [Pg.1338]    [Pg.69]    [Pg.449]    [Pg.449]    [Pg.450]    [Pg.519]    [Pg.2]    [Pg.28]    [Pg.189]    [Pg.212]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Computational methods

Computational methods electronic structure calculations

Computer methods

Methods calculation method

Redox potentials, calculations computational methods

Stage calculations computer methods

© 2024 chempedia.info