Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complexes oxonium

Ion-association complexes may be classified into three types non-chelated complexes chelated complexes oxonium systems. [Pg.60]

It should be noted that the Friedel-Crafts acylation differs from the Friedel-Crafts alkylation (compare Sections IV,3-4 and discussion preceding Section IV,1) in one important respect. The alkylation requires catal3d.ic quantities of aluminium chloride, but for acylation a molecular equivalent of aluminium chloride is necessary for each carbonyl group present in the acylating agent. This is because aluminium chloride is capable of forming rather stable complexes with the carbonyl group these complexes probably possess an oxonium... [Pg.725]

It is probable that, in general, acylation also occurs by the oxonium complex ... [Pg.726]

Trifluoromethanesulfonic acid is miscible in all proportions with water and is soluble in many polar organic solvents such as dimethylformamide, dimethyl sulfoxide, and acetonitrile. In addition, it is soluble in alcohols, ketones, ethers, and esters, but these generally are not suitably inert solvents. The acid reacts with ethyl ether to give a colorless, Hquid oxonium complex, which on further heating gives the ethyl ester and ethylene. Reaction with ethanol gives the ester, but in addition dehydration and ether formation occurs. [Pg.315]

Cocatalysts of two types occur (/) proton-donor substances, such as hydroxy compounds and proton acids, and (2) cation-forming substances (other than proton), including alkyl and acyl haUdes which form carbocations and other donor substances leading to oxonium, sulfonium, halonium, etc, complexes. [Pg.564]

Nitrating cellulose with pure HNO is the simplest method of obtaining CN. In practice, nitration does not occur with acid concentrations below 75%. At acid concentrations <75%, an unstable compound (so called Knecht compound) is formed which has been described as a molecular complex or an oxonium salt of the nitric acid (72). HNO concentrations of 75—85% yield CN with 5—8% N, which dissolve in excess acid. CN with % N of 8—10% are formed at acid concentrations of 85—89%. Above 89%, a heterogeneous nitration occurs without apparent swelling of the cellulose fibers. CN with 13.3% N can be obtained with 100% HNO. Addition of inorganic salts to 100% HNO can raise the % N to 13.9. [Pg.268]

Ethers are weakly basic and are converted to unstable oxonium salts by strong acids such as sulfudc acid, perchlodc acid, and hydrobromic acid relatively stable complexes ate formed between ethers and Lewis acids such as boron trifluodde, aluminum chlodde, and Gtignatd reagents (qv) (9) ... [Pg.425]

The mode of extraction in these oxonium systems may be illustrated by considering the ether extraction of iron(III) from strong hydrochloric acid solution. In the aqueous phase chloride ions replace the water molecules coordinated to the Fe3+ ion, yielding the tetrahedral FeCl ion. It is recognised that the hydrated hydronium ion, H30 + (H20)3 or HgO,, normally pairs with the complex halo-anions, but in the presence of the organic solvent, solvent molecules enter the aqueous phase and compete with water for positions in the solvation shell of the proton. On this basis the primary species extracted into the ether (R20) phase is considered to be [H30(R20)3, FeCl ] although aggregation of this species may occur in solvents of low dielectric constant. [Pg.169]

Cations which are covalently attached to the allyl anion part by a cr-bond and have sufficient Lewis acid properties offer the broadest versatility and highest levels of stereocontrol, since the C—C bond-forming step can occur in a pericyclic process9 accompanied by allylic inversion. It is reasonable to assume the prior assembly of both reaction partners in an open-chain complex, in which usually the (F )-oxonium ion, avoiding allylic 1,3-strain10, is predominant. [Pg.208]

Treatment of a-alkoxy-substituted iron acyl complexes 20 with bromine in the presence of an alcohol produces free acetals 22 with loss of stereochemistry at the center derived from the a-carbon of the starting complexl2,49. Electron donation from the alkoxy group allows formation of the oxonium intermediate 21, which is captured by the alcohol to generate the product acetal. [Pg.557]

Au-B bonds are also present in metal clusters with intersticial or peripheral boron atoms. An example is the cluster [Fe4(CO)12BH(AuPPh3)2], which was prepared by reaction of [AuCl(PPh3)] with the carbonyl iron dihydride. With the oxonium salt the reaction proceeds to the trinuclear gold derivative [Fe4(CO)12B(AuPPh3)3] (357).2063-2070 The ruthenium analogues and complexes with other ligands have been also synthesized as, for example, (358).2071-2079... [Pg.1025]

Heteronuclear /x-oxo complexes have been prepared by oxo/halide exchange reactions, then the reaction of metal halide complexes with the gold oxonium species gives complexes of the Jy [Rh2(dien)2 0(AuPPh3)2 (BF4)2 (476) (dien = COD, NBD) or [Pt(COD)2 OAu(PR3) 2] 2725 J "... [Pg.1057]

Assuming a reactive oxonium ylide 147 (or its metalated form) as the central intermediate in the above transformations, the symmetry-allowed [2,3] rearrangement would account for all or part of 148. The symmetry-forbidden [1,2] rearrangement product 150 could result from a dissociative process such as 147 - 149. Both as a radical pair and an ion pair, 149 would be stabilized by the respective substituents recombination would produce both [1,2] and additional [2,3] rearrangement product. Furthermore, the ROH-insertion product 146 could arise from 149. For the allyl halide reactions, the [1,2] pathway was envisaged as occurring via allyl metal complexes (Scheme 24) rather than an ion or radical pair such as 149. The remarkable dependence of the yield of [1,2] product 150 on the allyl acetal substituents seems, however, to justify a metal-free precursor with an allyl cation or allyl radical moiety. [Pg.140]

Oxygen-containing solvents with a strong coordinating ability, such as diethyl ether, methyl /.so-butyl ketone and /.so-amyl acetate, form oxonium cations with protons under strongly acidic conditions, e.g. (R20) H. Metals which form anionic complexes in strong acid can be extracted as ion pairs into such solvents. For example, Fe(III) is extracted from 7 M hydrochloric acid into diethyl ether as the ion pair... [Pg.63]


See other pages where Complexes oxonium is mentioned: [Pg.21]    [Pg.21]    [Pg.726]    [Pg.364]    [Pg.831]    [Pg.11]    [Pg.492]    [Pg.79]    [Pg.831]    [Pg.726]    [Pg.1027]    [Pg.1027]    [Pg.1028]    [Pg.1038]    [Pg.1041]    [Pg.1056]    [Pg.1056]    [Pg.1056]    [Pg.1056]    [Pg.1063]    [Pg.1069]    [Pg.175]    [Pg.209]    [Pg.350]    [Pg.64]    [Pg.345]    [Pg.211]    [Pg.310]    [Pg.311]    [Pg.36]    [Pg.86]    [Pg.662]    [Pg.318]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Oxonium

Oxonium ion crown ether complexes

© 2024 chempedia.info