Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex lipids, synthesis sphingolipids

We turn now to the biosynthesis of lipid structures. We begin with a discussion of the biosynthesis of fatty acids, stressing the basic pathways, additional means of elongation, mechanisms for the introduction of double bonds, and regulation of fatty acid synthesis. Sections then follow on the biosynthesis of glyc-erophospholipids, sphingolipids, eicosanoids, and cholesterol. The transport of lipids through the body in lipoprotein complexes is described, and the chapter closes with discussions of the biosynthesis of bile salts and steroid hormones. [Pg.802]

After synthesis on the smooth ER, the polar lipids, including the glycerophospholipids, sphingolipids, and glycolipids, are inserted into specific cellular membranes in specific proportions, by mechanisms not yet understood. Membrane lipids are insoluble in water, so they cannot simply diffuse from their point of synthesis (the ER) to their point of insertion. Instead, they are delivered in membrane vesicles that bud from the Golgi complex then move to and fuse with the target membrane (see Fig. 11-23). Cytosolic proteins also bind phospholipids and sterols and transport them between cellular membranes. These mechanisms contribute to the establishment of the characteristic lipid compositions of organelle membranes (see Fig. 11-2). [Pg.814]

Lipids have several important functions in animal cells, which include serving as structural components of membranes and as a stored source of metabolic fuel (Griner et al., 1993). Eukaryotic cell membranes are composed of a complex array of proteins, phospholipids, sphingolipids, and cholesterol. The relative proportions and fatty acid composition of these components dictate the physical properties of membranes, such as fluidity, surface potential, microdomain structure, and permeability. This in turn regulates the localization and activity of membrane-associated proteins. Assembly of membranes necessitates the coordinate synthesis and catabolism of phospholipids, sterols, and sphingolipids to create the unique properties of a given cellular membrane. This must be an extremely complex process that requires coordination of multiple biosynthetic and degradative enzymes and lipid transport activities. [Pg.91]

Recent studies have revealed that marine viruses encode unexpected and novel proteins which would not be expected to occur within a virus genome. For example, the giant algal viruses have been shown to encode novel glycosylases, potassium pumps, and a pathway for the synthesis of complex sphingolipids. This biochemical diversity indicates that marine viruses could be a rich source for exploitation in the future for new types of carbohydrate and lipid as well as new proteins and enzymes. [Pg.117]


See other pages where Complex lipids, synthesis sphingolipids is mentioned: [Pg.409]    [Pg.337]    [Pg.884]    [Pg.1765]    [Pg.1675]    [Pg.223]    [Pg.366]    [Pg.447]    [Pg.235]    [Pg.57]    [Pg.83]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Complex lipids, synthesis

Complex sphingolipids

Lipids complex

Sphingolipid

Sphingolipid synthesis

Sphingolipide

Sphingolipides

Sphingolipids

© 2024 chempedia.info