Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Competing equilibria, effect

Formal potentials are empirically derived potentials that compensate for the types of activity and competing equilibria effects that we have just described. The formal potential of a system is the potential of the half-cell with respect to the standard hydrogen electrode measured under conditions such that the ratio of analytical concentrations of reactants and products as they appear in the Nernst equation is exactly unity and the concentrations of other species in the system are all carefully specified. For example, the formal potential for the half-reaction... [Pg.517]

An important result of the concepts discussed in this section and the preceding one is that precipitation and complexation reactions exert joint control over metal ion solubility and transport. Whereas precipitation can limit the dissolved concentration of a specific species (Me ), complexation reactions can allow the total dissolved concentration of that metal to be much higher. The balance between these two competing processes, taking into account kinetic and equilibrium effects, often determines how much metal is transported in solution between two sites. [Pg.391]

The effect of added [Br ] on the bromination reaction is such as to retard the rate. This phenomenon is attributable to a competing equilibrium,Br" + Br2 Br3 that decreases the available free [Br2]. In HOAc, the accepted value for the tribromide equilibrium constant is Kgq = 92 M-1 (ref. 11). Both Br2 and Br3 are brominating agents so that the rate of disappearance of total bromine, or [Br2]j, is... [Pg.119]

The effect of sodium carbonate as an inorganic additive is mechanistically not completely clear. According to the dynamic ion-exchange model, it is to be assumed that carbonate ions are found in a competing equilibrium with solute ions for the exchange groups that are adsorbed at the surface of the stationary phase. This is a plausible explanation for the strong effect of carbonate on the retention of divalent species. [Pg.253]

The values of kH/kD for the uncatalysed and catalysed reactions were 4.36 and 4.47 respectively, yet the isotope effect is not necessarily diminished on reducing the concentration of iodide ion to zero and by the arguments elaborated above (p. 95) this implies that molecular iodine is not the iodinating species and that this species is formed in some pre-equilibrium, the function of the base being to form the species and not to remove the proton. This argument assumes, as does the previous discussion of the effect of iodide ion concentration on isotope effects, that a minute concentration of I- is insufficient to compete effectively with the reaction involving proton loss. [Pg.97]

Transient nOe represents the rate of nOe buildup. The nOe effect (so-called equilibrium value) itself depends only on the competing balance between various complex relaxation pathways. But the initial rate at which the nOe grows (so-called transient nOe) depends only on the rate of cross-relaxation t, between the relevant dipolarly coupled nuclei, which in turn depends on their internuclear distance (r). [Pg.207]

By contrast with nonazeotropic systems, for azeotropic systems there is a maximum reflux ratio above which the separation deteriorates16. This is because an increase in reflux ratio results in two competing effects. Firstly, as in nonazeotropic distillation, the relative position of the operating surface relative to the equilibrium surface changes to improve the separation. This is countered by a reduction in the entrainer concentration, owing to dilution by the increased reflux, which results in a reduction in the relative volatility between the azeotropic components, leading to a poorer separation16. [Pg.255]

Attack by eCN is slow (rate-limiting), while proton transfer from HCN or a protic solvent, e.g. HzO, is rapid. The effect of the structure of the carbonyl compound on the position of equilibrium in cyanohydrin formation has already been referred to (p. 206) it is a preparative proposition with aldehydes, and with simple aliphatic and cyclic ketones, but is poor for ArCOR, and does not take place at all with ArCOAr. With ArCHO the benzoin reaction (p. 231) may compete with cyanohydrin formation with C=C—C=0, 1,4-addition may compete (cf. p. 200). [Pg.212]

Productive bimolecular reactions of the ion radicals in the contact ion pair can effectively compete with the back electron transfer if either the cation radical or the anion radical undergoes a rapid reaction with an additive that is present during electron-transfer activation. For example, the [D, A] complex of an arene donor with nitrosonium cation exists in the equilibrium with a low steady-state concentration of the radical pair, which persists indefinitely. However, the introduction of oxygen rapidly oxidizes even small amounts of nitric oxide to compete with back electron transfer and thus successfully effects aromatic nitration80 (Scheme 16). [Pg.230]

The fluoride ion is the only inorganic ligand to form a complete substitution series, Be(H20)4 flFJ(2 1 (n = 1-4), though there is considerable variation in the equilibrium constants that have been reported. The most reliable values are probably those of Anttila et al. (117) who used both glass and fluoride-ion selective electrodes and also took account of the competing hydrolysis reactions. They did not, however, make measurements in the conditions where BeF2 would have been formed. A speciation diagram based on reported equilibrium constants is shown in Fig. 12. It can be seen that the fluoride ion competed effectively with hydroxide at pH values up to 8, when Be(OH)2 precipitates. [Pg.131]

Such equilibrium constants enable calculations and deductions to be made for real systems and may be used to assess the progress of a particular reaction amongst a number of competing or interfering reactions. From this consideration the possibility of masking interfering reactions also emerges. Suppose the solution above contains a second metal ion N + which can also react with L . If the amount of L is limited, N + will be in competition with M +. Its effect, however, may be masked if A can be selected to react... [Pg.30]

No carrier is completely specific for a given trace metal metals of similar ionic radii and coordination geometry are also susceptible to being adsorbed at the same site. The binding of a competing metal to an uptake site will inhibit adsorption as a function of the respective concentrations and equilibrium constants (or kinetic rate constants, see below) of the metals. Indeed, this is one of the possible mechanisms by which toxic trace metals may enter cells using transport systems meant for nutrient metals. The reduced flux of a nutrient metal or the displacement of a nutrient metal from a metabolic site can often explain biological effects [92]. [Pg.478]

The situation would be completely different for oxycarbenium ions in a highly polar solvent such as sulphur dioxide which could compete effectively as solvating agent with the DCA and their polymers. In such systems one could envisage that both the solvent-solvated oxycarbenium ions and also the solvent-solvated teJt.-oxonium ions could coexist in a true equilibrium, and that each would react according to its own characteristics. This is an area which remains very largely unexplored, although Penczek has made a start in this direction and these considerations arose from discussions with him of his exploratory experiments with sulphur dioxide as solvent. [Pg.764]

It should be recalled that, in polar rigid media, excitation on the red-edge of the absorption spectrum causes a red-shift of the fluorescence spectrum with respect to that observed on excitation in the bulk of the absorption spectrum (see the explanation of the red-edge effect in Section 3.5.1). Such a red-shift is still observable if the solvent relaxation competes with the fluorescence decay, but it disappears in fluid solutions because of dynamic equilibrium among the various solvation sites. [Pg.207]

Like reaction rates, the effect of solvent polarity on equilibria may be rationalized by consideration of the relative polarities of the species on each side of the equilibrium. A polar solvent will therefore favour polar species. A good example is the keto-enol tautomerization of ethyl acetoacetate, in which the 1,3-dicarbonyl, or keto, form is more polar than the enol form, which is stabilized by an intramolecular H-bond. The equilibrium is shown in Scheme 1.3. In cyclohexane, the enol form is slightly more abundant. Increasing the polarity of the solvent moves the equilibrium towards the keto form [28], In this example, H-bonding solvents will compete with the intramolecular H-bond, destabilizing the enol form of the compound. [Pg.27]


See other pages where Competing equilibria, effect is mentioned: [Pg.91]    [Pg.215]    [Pg.251]    [Pg.196]    [Pg.23]    [Pg.357]    [Pg.450]    [Pg.593]    [Pg.403]    [Pg.407]    [Pg.34]    [Pg.1081]    [Pg.220]    [Pg.214]    [Pg.51]    [Pg.70]    [Pg.303]    [Pg.228]    [Pg.732]    [Pg.73]    [Pg.556]    [Pg.47]    [Pg.97]    [Pg.170]    [Pg.25]    [Pg.289]    [Pg.150]    [Pg.8]    [Pg.239]    [Pg.96]    [Pg.396]    [Pg.595]    [Pg.287]    [Pg.163]    [Pg.68]    [Pg.1269]   


SEARCH



Competence

Competence, competencies

Competency

Competent

© 2024 chempedia.info