Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloids electric double-layer

Acoustics has a related field that is usually referred to as electroacoustics (8). Electroacoustics can provide particle size distribution as well as zeta potential. This relatively new technique is more complex than acoustics because an additional electric field is involved. As a result, both hardware and theory become more complicated. There are even two different versions of electroacoustics depending on what field is used as a driving force. Electrokinetic sonic amplitude (ESA) involves the generation of sound energy caused by the driving force of an applied electric field. Colloid vibration current (CVC) is the phenomenon where sound energy is applied to a system and a resultant eleetrie field or eurrent is created by the vibration of the colloid electric double layers. [Pg.186]

Ionic Structures in Colloidal Electric Double Layers ... [Pg.63]

A number of refinements and applications are in the literature. Corrections may be made for discreteness of charge [36] or the excluded volume of the hydrated ions [19, 37]. The effects of surface roughness on the electrical double layer have been treated by several groups [38-41] by means of perturbative expansions and numerical analysis. Several geometries have been treated, including two eccentric spheres such as found in encapsulated proteins or drugs [42], and biconcave disks with elastic membranes to model red blood cells [43]. The double-layer repulsion between two spheres has been a topic of much attention due to its importance in colloidal stability. A new numeri-... [Pg.181]

Often the van der Waals attraction is balanced by electric double-layer repulsion. An important example occurs in the flocculation of aqueous colloids. A suspension of charged particles experiences both the double-layer repulsion and dispersion attraction, and the balance between these determines the ease and hence the rate with which particles aggregate. Verwey and Overbeek [44, 45] considered the case of two colloidal spheres and calculated the net potential energy versus distance curves of the type illustrated in Fig. VI-5 for the case of 0 = 25.6 mV (i.e., 0 = k.T/e at 25°C). At low ionic strength, as measured by K (see Section V-2), the double-layer repulsion is overwhelming except at very small separations, but as k is increased, a net attraction at all distances... [Pg.240]

Splelman L A and Friedlander S K 1974 Role of the electrical double layer In particle deposition by convective diffusion J. Colloid. Interfaoe. Sol. 46 22-31... [Pg.2851]

The well-known DLVO theory of coUoid stabiUty (10) attributes the state of flocculation to the balance between the van der Waals attractive forces and the repulsive electric double-layer forces at the Hquid—soHd interface. The potential at the double layer, called the zeta potential, is measured indirectly by electrophoretic mobiUty or streaming potential. The bridging flocculation by which polymer molecules are adsorbed on more than one particle results from charge effects, van der Waals forces, or hydrogen bonding (see Colloids). [Pg.318]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

The existence of a double layer determines the properties of many systems in electrochemistry, in colloidal sciences, in biology, etc. [1-4]. Owing to their importance, electrical double layers have long been and remain a subject of intense research on both experimental and theoretical aspects. This is covered by some recent textbooks and review articles [3,5-10]. [Pg.800]

Chapters 15 through 17 are devoted to mathematical modeling of particular systems, namely colloidal suspensions, fluids in contact with semi-permeable membranes, and electrical double layers. Finally, Chapter 18 summarizes recent studies on crystal growth process. [Pg.944]

Loeb, AL Overbeek, JTG Wiersema, PH, The Electrical Double Layer Around a Spherical Colloid Particle, Computation of the Potential, Charge Density, and Free Energy of the Electrical Double Layer Around a sperical Colloid Particle M.I.T. Press Cambridge, MA, 1961. Lorentz, HA, Wied, Ann. 11, 70, 1880. [Pg.615]

The physicochemical forces between colloidal particles are described by the DLVO theory (DLVO refers to Deijaguin and Landau, and Verwey and Overbeek). This theory predicts the potential between spherical particles due to attractive London forces and repulsive forces due to electrical double layers. This potential can be attractive, or both repulsive and attractive. Two minima may be observed The primary minimum characterizes particles that are in close contact and are difficult to disperse, whereas the secondary minimum relates to looser dispersible particles. For more details, see Schowalter (1984). Undoubtedly, real cases may be far more complex Many particles may be present, particles are not always the same size, and particles are rarely spherical. However, the fundamental physics of the problem is similar. The incorporation of all these aspects into a simulation involving tens of thousands of aggregates is daunting and models have resorted to idealized descriptions. [Pg.163]

Gur, Y. Ravina, I. Babchin, A. J., On the electrical double layer theory. II. The Poisson-Boltzman equation including hydration forces, J. Colloid Inter. Sci. 64, 333-341... [Pg.273]

Each colloid particle is surrounded with an electric double layer. [Pg.512]

Simple electrolyte ions like Cl, Na+, SO , Mg2+ and Ca2+ destabilize the iron(Hl) oxide colloids by compressing the electric double layer, i.e., by balancing the surface charge of the hematite with "counter ions" in the diffuse part of the double... [Pg.255]

Harding, I. H., and T. W. Healy (1985), "Electrical Double Layer Properties of Amphoteric Polymer Latex Colloids", J. Coll. Interf. Sd. 107, 382-397. [Pg.404]

Spielman, L. A. and FRIEDLANDER, S. K. J. Colloid and Interface. Sci. 46 (1974) 22. Role of the electrical double layer in particle deposition by convective diffusion. [Pg.435]


See other pages where Colloids electric double-layer is mentioned: [Pg.640]    [Pg.47]    [Pg.640]    [Pg.47]    [Pg.44]    [Pg.1443]    [Pg.420]    [Pg.420]    [Pg.102]    [Pg.120]    [Pg.355]    [Pg.8]    [Pg.252]    [Pg.925]    [Pg.18]    [Pg.208]    [Pg.222]    [Pg.361]    [Pg.361]    [Pg.253]    [Pg.270]    [Pg.402]    [Pg.245]    [Pg.233]    [Pg.28]    [Pg.156]    [Pg.564]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 ]




SEARCH



Colloidal electric double layers ionic structures

Colloidal system electric double-layer properties

Electric double layer

Electrical double layer

Electrical double layer, colloid particle

Electrical/electrically double-layer

The Electrical Double Layer and Colloid Stability

© 2024 chempedia.info