Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collision time-dependent

Probability amplitude for making a transition from some initial state to a final state as a result of a collision. Time-dependent wave packet... [Pg.3194]

Many optical studies have employed a quasi-static cell, through which the photolytic precursor of one of the reagents and the stable molecular reagent are slowly flowed. The reaction is then initiated by laser photolysis of the precursor, and the products are detected a short time after the photolysis event. To avoid collisional relaxation of the internal degrees of freedom of the product, the products must be detected in a shorter time when compared to the time between gas-kinetic collisions, that depends inversely upon the total pressure in the cell. In some cases, for example in case of the stable NO product from the H + NO2 reaction discussed in section B2.3.3.2. the products are not removed by collisions with the walls and may have long residence times in the apparatus. Study of such reactions are better carried out with pulsed introduction of the reagents into the cell or under crossed-beam conditions. [Pg.2080]

Reactive atomic and molecular encounters at collision energies ranging from thermal to several kiloelectron volts (keV) are, at the fundamental level, described by the dynamics of the participating electrons and nuclei moving under the influence of their mutual interactions. Solutions of the time-dependent Schrodinger equation describe the details of such dynamics. The representation of such solutions provide the pictures that aid our understanding of atomic and molecular processes. [Pg.219]

Pechukas, P. Time-dependent semiclassical scattering theory. II Atomic collisions. Phys. Rev. 181 (1969) 174-185. [Pg.34]

The preferable theoretical tools for the description of dynamical processes in systems of a few atoms are certainly quantum mechanical calculations. There is a large arsenal of powerful, well established methods for quantum mechanical computations of processes such as photoexcitation, photodissociation, inelastic scattering and reactive collisions for systems having, in the present state-of-the-art, up to three or four atoms, typically. " Both time-dependent and time-independent numerically exact algorithms are available for many of the processes, so in cases where potential surfaces of good accuracy are available, excellent quantitative agreement with experiment is generally obtained. In addition to the full quantum-mechanical methods, sophisticated semiclassical approximations have been developed that for many cases are essentially of near-quantitative accuracy and certainly at a level sufficient for the interpretation of most experiments.These methods also are com-... [Pg.365]

The interaction of a molecular species with electromagnetic fields can cause transitions to occur among the available molecular energy levels (electronic, vibrational, rotational, and nuclear spin). Collisions among molecular species likewise can cause transitions to occur. Time-dependent perturbation theory and the methods of molecular dynamics can be employed to treat such transitions. [Pg.375]

All of these time correlation functions contain time dependences that arise from rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole P-avejv (t), the vibrational transition dipole itrans (t) or the electronic transition dipole ii f(Re,t)) and the latter two also contain oscillatory time dependences (i.e., exp(icofv,ivt) or exp(icOfvjvt + iAEi ft/h)) that arise from vibrational or electronic-vibrational energy level differences. In the treatments of the following sections, consideration is given to the rotational contributions under circumstances that characterize, for example, dilute gaseous samples where the collision frequency is low and liquid-phase samples where rotational motion is better described in terms of diffusional motion. [Pg.427]

If the rotational motion of the molecules is assumed to be entirely unhindered (e.g., by any environment or by collisions with other molecules), it is appropriate to express the time dependence of each of the dipole time correlation functions listed above in terms of a "free rotation" model. For example, when dealing with diatomic molecules, the electronic-vibrational-rotational C(t) appropriate to a specific electronic-vibrational transition becomes ... [Pg.427]

All discussions of transport processes currently available in the literature are based on perturbation theory methods applied to kinetic pictures of micro-scattering processes within the macrosystem of interest. These methods do involve time-dependent hamiltonians in the sense that the interaction operates only during collisions, while the wave functions are known only before and after the collision. However these interactions are purely internal, and their time-dependence is essentially implicit the over-all hamiltonian of the entire system, such as the interaction term in Eq. (8-159) is not time-dependent, and such micro-scattering processes cannot lead to irreversible changes of thermodynamic (ensemble average) properties. [Pg.483]

To properly describe electronic rearrangement and its dependence on both nuclear positions and velocities, it is necessary to develop a time-dependent theory of the electronic dynamics in molecular systems. A very useful approximation in this regard is the time-dependent Hartree-Fock approximation (34). Its combination with the eikonal treatment has been called the Eik/TDHF approximation, and has been implemented for ion-atom collisions.(21, 35-37) Approximations can be systematically developed from time-dependent variational principles.(38-41) These can be stated for wavefunctions and lead to differential equations for time-dependent parameters present in trial wavefunctions. [Pg.319]

Molecular rearrangement resulting from molecular collisions or excitation by light can be described with time-dependent many-electron density operators. The initial density operator can be constructed from the collection of initially (or asymptotically) accessible electronic states, with populations wj. In many cases these states can be chosen as single Slater determinants formed from a set of orthonormal molecular spin orbitals (MSOs) im as / =... [Pg.328]

Hydrodynamic effects on suspended particles in an STR may be broadly categorized as time-averaged, time-dependent and collision-related. Time-averaged shear rates are most commonly considered. Maximum shear rates, and accordingly maximum stresses, are assumed to occur in the impeller region. Time-dependent effects, on the other hand, are attributable to turbulent velocity fluctuations. The relevant turbulent Reynolds stresses are frequently evaluated in terms of the characteristic size and velocity of the turbulent eddies and are generally found to predominate over viscous effects. [Pg.146]

G. C. Schatz and M. A. Ratner (1993) Quantum Mechanics in Chemistry (Prentice-Hall, Englewood Cliffs, NJ). An advanced text emphasizing molecular symmetry and rotations, time-dependent quantum mechanics, collisions and rate processes, correlation functions, and density matrices. [Pg.346]

NMR signals are highly sensitive to the unusual behavior of pore fluids because of the characteristic effect of pore confinement on surface adsorption and molecular motion. Increased surface adsorption leads to modifications of the spin-lattice (T,) and spin-spin (T2) relaxation times, enhances NMR signal intensities and produces distinct chemical shifts for gaseous versus adsorbed phases [17-22]. Changes in molecular motions due to molecular collision frequencies and altered adsorbate residence times again modify the relaxation times [26], and also result in a time-dependence of the NMR measured molecular diffusion coefficient [26-27]. [Pg.306]

We first consider the stmcture of the rate constant for low catalyst densities and, for simplicity, suppose the A particles are converted irreversibly to B upon collision with C (see Fig. 18a). The catalytic particles are assumed to be spherical with radius a. The chemical rate law takes the form dnA(t)/dt = —kf(t)ncnA(t), where kf(t) is the time-dependent rate coefficient. For long times, kf(t) reduces to the phenomenological forward rate constant, kf. If the dynamics of the A density field may be described by a diffusion equation, we have the well known partially absorbing sink problem considered by Smoluchowski [32]. To determine the rate constant we must solve the diffusion equation... [Pg.129]

To uniquely associate the unusual behavior of the collision observables with the existence of a reactive resonance, it is necessary to theoretically characterize the quantum state that gives rise to the Lorentzian profile in the partial cross-sections. Using the method of spectral quantization (SQ), it is possible to extract a Seigert state wavefunction from time-dependent quantum wavepackets using the Fourier relation Eq. (21). The state obtained in this way for J = 0 is shown in Fig. 7 this state is localized in the collinear F — H — D arrangement with 3-quanta of excitation in the asymmetric stretch mode, and 0-quanta of excitation in the bend and symmetric stretch modes. If the state pictured in Fig. 7 is used as an initial (prepared) state in a wavepacket calculation, one observes pure... [Pg.64]

Treating the free electrons in a metal as a collection of zero-frequency oscillators gives rise51 to a complex frequency-dependent dielectric constant of 1 - a>2/(co2 - ia>/r), with (op = (47me2/m)l/2 the plasma frequency and r a collision time. For metals like Ag and Au, and with frequencies (o corresponding to visible or ultraviolet light, this simplifies to give a real part... [Pg.38]


See other pages where Collision time-dependent is mentioned: [Pg.15]    [Pg.664]    [Pg.957]    [Pg.2051]    [Pg.2800]    [Pg.2882]    [Pg.3002]    [Pg.75]    [Pg.234]    [Pg.237]    [Pg.434]    [Pg.18]    [Pg.53]    [Pg.736]    [Pg.12]    [Pg.258]    [Pg.319]    [Pg.35]    [Pg.505]    [Pg.282]    [Pg.284]    [Pg.158]    [Pg.159]    [Pg.673]    [Pg.258]    [Pg.261]    [Pg.262]    [Pg.281]    [Pg.315]    [Pg.76]    [Pg.179]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Collision time

© 2024 chempedia.info