Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Collaborative Testing and Analysis of Variance

In the two-sample collaborative test, each analyst performs a single determination on two separate samples. The resulting data are reduced to a set of differences, D, and a set of totals, T, each characterized by a mean value and a standard deviation. Extracting values for random errors affecting precision and systematic differences between analysts is relatively straightforward for this experimental design. [Pg.693]

An alternative approach for collaborative testing is to have each analyst perform several replicate determinations on a single, common sample. This approach generates a separate data set for each analyst, requiring a different statistical treatment to arrive at estimates for Grand and Csys- [Pg.693]

A variety of statistical methods may be used to compare three or more sets of data. The most commonly used method is an analysis of variance (ANOVA). In its simplest form, a one-way ANOVA allows the importance of a single variable, such as the identity of the analyst, to be determined. The importance of this variable is evaluated by comparing its variance with the variance explained by indeterminate sources of error inherent to the analytical method. [Pg.693]

Variance was introduced in Chapter 4 as one measure of a data set s spread around its central tendency. In the context of an analysis of variance, it is useful to see that variance is simply a ratio of the sum of squares for the differences between individual values and their mean, to the degrees of freedom. For example, the variance, s, of a data set consisting of n measurements is given as [Pg.693]

Let s use a simple example to develop the rationale behind a one-way ANOVA calculation. The data in Table 14.7 show the results obtained by several analysts in determining the purity of a single pharmaceutical preparation of sulfanilamide. Each column in this table lists the results obtained by an individual analyst. For convenience, entries in the table are represented by the symbol where i identifies the analyst and j indicates the replicate number thus 3 5 is the fifth replicate for the third analyst (and is equal to 94.24%). The variability in the results shown in Table 14.7 arises from two sources indeterminate errors associated with the analytical procedure that are experienced equally by all analysts, and systematic or determinate errors introduced by the analysts. [Pg.693]


See other pages where Collaborative Testing and Analysis of Variance is mentioned: [Pg.693]   


SEARCH



Analysis of variance

Analysis tests

Collaborative test

Test and Analysis

Testing analysis

Variance analysis

Variance testing

© 2024 chempedia.info