Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cold computational fluid dynamics

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

The occupational environment can be neutral, cold or hot. A combined action between the four environmental parameters (temperature, relative humidity, velocity and radiant heat) and the two individual parameters (clothing worn by the occupants and their activity) can lead to a thermal comfort, discomfort, or to a thermal stress situation (Parsons, 2013). The integration of these parameters can be done in a thermal index in a way that will provide a single value that is related to the effects on the occupants. Three types of indices can be identified empirical, rational and derived. According to Parsons (2000), rational indices are derived from mathematical models that describe the behavior of the human body in thermal environments. The analysis of these situations can be achieved using diverse techniques and comfort models, such as Computation Fluid Dynamics (CFD) and other numerical simulations (Murakami et ah, 2000). The human thermal software (Teixeira et al., 2010) is based on differential... [Pg.317]

Cloud physicists draw on the well-developed sciences of chemistry, physics, and fluid dynamics to study these phenomena. Such topics as the thermodynamics of moist air, the physics of the growth of water droplets and ice particles, radiation, effects of clouds on climate, electrification, and chemical conversion processes are all part of this discipline. Major research tools include computers for numerical simulation and aircraft and radars for observation, along with wind firrmels and cold rooms for the study of the properties of cloud and precipitation particles. [Pg.79]

The COAST computer program is used to calculate the reactor coolant flow coast down transient for any combination of active and inactive pumps and forward or reverse flow in the hot or cold legs. The equations of conservation of momentum are written for each of the flow paths of the COAST model assuming unsteady one-dimensional flow of an incompressible fluid. The equation of conservation of mass is written for the appropriate nodal points. Pressure losses due to friction, and geometric losses are assumed proportional to the flow velocity squared. Pump dynamics are modelled using a head-flow curve for a pump at fiill speed and using four-quadrant curves, which are parametric diagrams of pump head and torque on coordinates of speed versus flow, for a pump at other than full speed. [Pg.122]


See other pages where Cold computational fluid dynamics is mentioned: [Pg.1176]    [Pg.396]    [Pg.292]    [Pg.1281]    [Pg.524]    [Pg.419]    [Pg.205]    [Pg.485]    [Pg.564]    [Pg.1697]    [Pg.171]    [Pg.281]    [Pg.463]    [Pg.401]    [Pg.408]    [Pg.293]    [Pg.373]    [Pg.399]    [Pg.1299]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Computation fluid dynamics

Computational fluid

Computational fluid dynamics

Fluid dynamics

© 2024 chempedia.info