Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coke deposits formation

The visbreaking process thermally cracks atmospheric or vacuum residues. Conversion is limited by specifications for marine or Industrial fuel-oil stability and by the formation of coke deposits in equipment such as heaters and exchangers. [Pg.378]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

Deactivation of zeolite catalysts occurs due to coke formation and to poisoning by heavy metals. In general, there are two types of catalyst deactivation that occur in a FCC system, reversible and irreversible. Reversible deactivation occurs due to coke deposition. This is reversed by burning coke in the regenerator. Irreversible deactivation results as a combination of four separate but interrelated mechanisms zeolite dealu-mination, zeolite decomposition, matrix surface collapse, and contamination by metals such as vanadium and sodium. [Pg.72]

A higher steam/hydrocarhon ratio favors olefin formation. Steam reduces the partial pressure of the hydrocarbon mixture and increases the yield of olefins. Heavier hydrocarbon feeds require more steam than gaseous feeds to additionally reduce coke deposition in the furnace tubes. Liquid feeds such as gas oils and petroleum residues have complex polynuclear aromatic compounds, which are coke precursors. Steam to hydrocarbon weight ratios range between 0.2-1 for ethane and approximately 1-1.2 for liquid feeds. [Pg.96]

Coke formation on these catalysts occurs mainly via methane decomposition. Deactivation as a function of coke content (see Fig. 3 for Pt/ y-AljO,) seems to involve two processes, i e, a slow initial one caused by coke formed from methane on Pt that is non reactive towards CO2 (see Table 3) In parallel, carbon also accumulates on the support and given the ratio between the support surface and metal surface area at a certain level begins to physically block Pt deactivating the catalyst rapidly. The coke deposited on the support very close to the Pt- support interface could be playing an important role in this process. [Pg.470]

We propose that the complicated dry oxidation of bitumen can be represented as the sum of contributions from two classes of oxidation reaction. One class of reactions is the partial oxidation that leads to deposition of coke and formation of "oxygenated bitumen", with very little production of carbon oxides and water. This class of reactions is concisely summarized by... [Pg.430]

The two limiting cases for the distribution of deactivated catalyst sites are representative of some of the situations that can be encountered in industrial practice. The formation of coke deposits on some relatively inactive cracking catalysts would be expected to occur uniformly throughout the catalyst pore structure. In other situations the coke may deposit as a peripheral shell that thickens with time on-stream. Poisoning by trace constituents of the feed stream often falls in the pore-mouth category. [Pg.464]

Chen and co-workers have studied the role of coke deposition in the conversion of methanol to olefins over SAPO-34 [111]. They found that the coke formed from oxygenates promoted olefin formation while the coke formed from olefins had only a deactivating effect The yield of olefins during the MTO reaction was found to go through a maximum as a function of both time and amount of coke. Coke was found to reduce the DME dilfusivity, which enhances the formation of olefins, particularly ethylene. The ethylene to propylene ratio increased with intracrystal-line coke content, regardless of the nature of the coke. [Pg.527]

Although the stoichiometry for reaction (9.1) suggests that one only needs 1 mol of water per mole of methane, excess steam must be used to favor the chemical equilibrium and reduce the formation of coke. Steam-to-carbon ratios of 2.5-3 are typical for natural gas feed. Carbon and soot formation in the combustion zone is an undesired reaction which leads to coke deposition on downstream tubes, causing equipment damage, pressure losses and heat transfer problems [21]. [Pg.291]

In order to improve the resistance of Ni/Al203-based catalysts to sintering and coke formation, some workers have proposed the use of cerium compounds [36]. Ceria, a stable fluorite-type oxide, has been studied for various reactions due to its redox properties [37]. Zhu and Flytzani-Stephanopoulos [38] studied Ni/ceria catalysts for the POX of methane, finding that the presence of ceria, coupled with a high nickel dispersion, allows more stability and resistance to coke deposition. The synergistic effect of the highly dispersed nickel/ceria system is attributed to the facile transfer of oxygen from ceria to the nickel interface with oxidation of any carbon species produced from methane dissociation on nickel. [Pg.295]

The precursors for the formation of heavy polymer and coke deposits are initially formed as a result of an ineffective or damaged feed injection system. Loss of pressure drop across the injector nozzle(s) is an indication the flow has been lost an increase in pressure drop indicates a plugged nozzle. In either case, the catalyst to... [Pg.111]

The technical development of petroleum coking has been inseparable from the development of thermal cracking. Untold millions have been spent on research and development trying to eliminate the formation of petroleum coke. Added millions have been spent learning how to prevent coke from forming in heating coils and making the coke deposit where it could be removed most conveniently (18). [Pg.280]

Other secondary reactions taking place under operating conditions are the Bou-douard reaction [Eq. (3.10)], coke deposition [Eq. (3.11)], and carbide formation [Eq. (3.12)] ... [Pg.101]

The major results of this study are consistent with a simple picture of mordenite catalysts. An increase in effective pore diameter, whether by extraction or exchange, will increase the rate of transport of reactant and product molecules to and from the active sites. However, aluminum ions are necessary for catalytic activity as aluminum is progressively removed by acid extraction, the number of active sites and the initial activity decrease. Coke deposition is harmful in two ways coke formation as the reaction proceeds will cause a decrease in effective pore diameter and effective diffusivity, and coke deposited on active sites will result in a chemical deactivation as well. [Pg.600]


See other pages where Coke deposits formation is mentioned: [Pg.101]    [Pg.111]    [Pg.101]    [Pg.111]    [Pg.192]    [Pg.478]    [Pg.83]    [Pg.375]    [Pg.378]    [Pg.544]    [Pg.263]    [Pg.325]    [Pg.427]    [Pg.40]    [Pg.59]    [Pg.59]    [Pg.98]    [Pg.98]    [Pg.130]    [Pg.405]    [Pg.179]    [Pg.187]    [Pg.200]    [Pg.111]    [Pg.113]    [Pg.201]    [Pg.223]    [Pg.72]    [Pg.77]    [Pg.282]    [Pg.66]    [Pg.119]    [Pg.263]    [Pg.510]    [Pg.832]    [Pg.192]    [Pg.563]    [Pg.269]   
See also in sourсe #XX -- [ Pg.15 , Pg.54 , Pg.95 , Pg.123 , Pg.201 ]




SEARCH



Coke deposit

Coke deposition

Coke formation

© 2024 chempedia.info