Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene complexes, cobalt

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

In a more recent and improved approach to cyclopropa-radicicol (228) [ 110], also outlined in Scheme 48, the synthesis was achieved via ynolide 231 which was transformed to the stable cobalt complex 232. RCM of 232 mediated by catalyst C led to cyclization product 233 as a 2 1 mixture of isomers in 57% yield. Oxidative removal of cobalt from this mixture followed by cycloaddition of the resulting cycloalkyne 234 with the cyclic diene 235 led to the benzofused macrolactone 236, which was converted to cyclopropa-radicicol (228). [Pg.314]

Nitronate anions react with (jl-allyl)cobalt complexes prepared from acylation of 1,3-dienes by acetylcobalt tetracarbonyl to produce nitro enones (Eq. 5.50).74... [Pg.140]

Under the conditions of the cobalt-mediated carbonylative A-oxide-promoted cocyclization (Pauson-Khand reaction) at room temperature, compound 547 provides exocyclic 1,3-diene 548 as the major product (>98%) together with only traces of the corresponding carbonylative product 549. Owing to the relative instability of the diene, it is more efficient to perform a one-pot cobalt cyclization/Diels-Alder process after A-oxide-promoted cyclization of the cobalt complexes. Compound 550 is obtained as a single diastereomer in 39% overall yield if MTAD is used as a dienophile (Scheme 90) <2003JOC2975>. [Pg.444]

A mechanism was proposed in which entry into the catalytic cycle is achieved via Et2AlCl-mediated cobalt hydride generation. Diene hydrometallation affords the cobalt-complexed -jr-allyl A-5, which inserts the tethered alkene to furnish intermediate B-4. Elimination of LnCoOBn provides the cyclization product. Reduction of LnCoOBn by Et2AlCl regenerates cobalt hydride to complete the catalytic cycle (Scheme 17). [Pg.502]

Cyclopentadiene(diene)cobalt complexes, the largest catagory of diene complexes of Co, may be prepared by direct complexation, by preparation of the dienes within the coordination sphere of Co and by nucleophilic addition to ( j5-dienyl)CoCp cations. In comparison to (diene)CoCp complexes, there are considerably fewer examples of (diene)RhCp and (diene)IrCp complexes known. [Pg.929]

For a decade or so [CoH(CN)5] was another acclaimed catalyst for the selective hydrogenation of dienes to monoenes [2] and due to the exclusive solubility of this cobalt complex in water the studies were made either in biphasic systems or in homogeneous aqueous solutions using water soluble substrates, such as salts of sorbic add (2,4-hexadienoic acid). In the late nineteen-sixties olefin-metal and alkyl-metal complexes were observed in hydrogenation and hydration reactions of olefins and acetylenes with simple Rii(III)- and Ru(II)-chloride salts in aqueous hydrochloric acid [3,4]. No significance, however, was attributed to the water-solubility of these catalysts, and a new impetus had to come to trigger research specifically into water soluble organometallic catalysts. [Pg.10]

An anionic complex 30 has been synthesized from fluoride attack on Fe-(l-4-f/4-octafluorocyclohexa-l,3-diene)(CO)3] (75), and the cobalt complex 31 is the product of the reaction of perfluorocyclopentadiene with [Co2-(CO)8] (76). No subsequent chemistry of these compounds has been reported. [Pg.196]

This tendency toward oxidative addition is even more conspicuous with perfluorobuta-1,3-diene, which forms the metallacyclic complex 37 rather than an 4-diene complex 81,82). A poorly characterized cobalt complex of stoichiometry [Co2(C4F6)(CO)6] has been isolated (81). [Pg.198]

The hydroformylation of conjugated dienes with unmodified cobalt catalysts is slow, since the insertion reaction of the diene generates an tj3-cobalt complex by hydride addition at a terminal carbon (equation 10).5 The stable -cobalt complex does not undergo facile CO insertion. Low yields of a mixture of n- and iso-valeraldehyde are obtained. The use of phosphine-modified rhodium catalysts gives a complex mixture of Cs monoaldehydes (58%) and C6 dialdehydes (42%). A mixture of mono- and di-aldehydes are also obtained from 1,3- and 1,4-cyclohexadienes with a modified rhodium catalyst (equation ll).29 The 3-cyclohexenecarbaldehyde, an intermediate in the hydrocarbonylation of both 1,3- and 1,4-cyclo-hexadiene, is converted in 73% yield, to the same mixture of dialdehydes (cis.trans = 35 65) as is produced from either diene. [Pg.922]

Chiral crystals generated from non-chiral molecules have served as reactants for the performance of so-called absolute asymmetric synthesis. The chiral environments of such crystals exert asymmetric induction in photochemical, thermal and heterogeneous reactions [41]. Early reports on successful absolute asymmetric synthesis include the y-ray-induced isotactic polymerization of frans-frans-l,3-pentadiene in an all-frans perhydropheny-lene crystal by Farina et al. [42] and the gas-solid asymmetric bromination ofpjp -chmethyl chalcone, yielding the chiral dibromo compound, by Penzien and Schmidt [43]. These studies were followed by the 2n + 2n photodimerization reactions of non-chiral dienes, resulting in the formation of chiral cyclobutanes [44-48]. In recent years more than a dozen such syntheses have been reported. They include unimolecular di- r-methane rearrangements and the Nourish Type II photoreactions [49] of an achiral oxo- [50] and athio-amide [51] into optically active /Mactams, photo-isomerization of alkyl-cobalt complexes [52], asymmetric synthesis of two-component molecular crystals composed from achiral molecules [53] and, more recently, the conversion of non-chiral aldehydes into homochiral alcohols [54,55]. [Pg.128]

Most catalytic systems used in industrial production yield polyalkenes with very long chains which are unsuitable for current processing procedures and applications. For regulating molecular mass, H2 is preferred to organometal-lics. Hydrogen is not a suitable transfer agent in diene polymerizations on cobalt complexes [67] because it reduces the Co (II) zr-allylic centre to inactive Co (I) particles. [Pg.464]

Reductive coupling of allylic halides. This cobalt complex (1 equiv.) effects reductive coupling of allylic halides to form 1,5-dienes with preservation of the geometry of the double bonds/ The major product from coupling of terpenoid allylic halides is that formed by head-to-head coupling. The triphenylphosphine liberated during the reaction is removed as methyltriphenylphosphonium iodide, obtained by reaction with methyl... [Pg.129]

Many of the complexes discussed in the previous sections are catalysts for alkyne oligomerization. In fact, alkyne dimerization and trimerization (see Cyclodimerization -tri-merization Reactions) at a cobalt center is recognized as one of the most synthetically useful catalytic reactions mediated by a homogeneous transition metal complex. The cobalt complexes most useful and extensively studied are CpCoL2, where L is CO, alkene, diene, or phosphine. The complex types... [Pg.864]

Another cobalt complex having only hydrocarbon ligands, (1,3-butadiene)cyclopentadienylcobalt, has been obtained as a volatile red solid melting at 103°-105°C by reaction of the diene with dicyclopenta-dienylcobalt or (1-benzoyl-1,3-cyclopentadiene)cyclopentadienylcobalt (489). The compound decomposes slowly in air. [Pg.282]

By analogy with the cobalt analogs, the complexes (diene)Rh(C5Hs)... [Pg.301]

The anionic, water-soluble cobalt complex K3[Co(CN)5]H, under PTC conditions, effectively catalyzes the hydrogenation of dienes to monoenes [26-28]. In most cases 1,4-addition prevails, producing tran -alkenes in high yield. The catalytic pair Co /Q X" also accelerates the biphasic hydrogenation of styrene to ethylbenzene [29]. [Pg.955]


See other pages where Diene complexes, cobalt is mentioned: [Pg.634]    [Pg.121]    [Pg.34]    [Pg.886]    [Pg.954]    [Pg.815]    [Pg.816]    [Pg.213]    [Pg.454]    [Pg.248]    [Pg.96]    [Pg.209]    [Pg.783]    [Pg.691]    [Pg.277]    [Pg.374]    [Pg.385]    [Pg.376]    [Pg.57]    [Pg.255]    [Pg.285]    [Pg.231]    [Pg.454]    [Pg.295]    [Pg.303]    [Pg.783]    [Pg.371]    [Pg.1117]    [Pg.204]    [Pg.772]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



1.3- Dienes complexes

Cobalt diene

Complex diene

© 2024 chempedia.info