Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt carbonyl hydrogenation

Chalk, A. J., and J. F. Harrod, Adv. Organometallic Chem., 1968, 6, 119 (catalyses by cobalt carbonyls hydrogenation, hydroformylation, carboxylation, hydrosilylation, etc.). [Pg.800]

Note Unstable gas that decomposes rapidly in air at room temperature to cobalt carbonyl hydrogen.)... [Pg.75]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

An early attempt to hydroformylate butenediol using a cobalt carbonyl catalyst gave tetrahydro-2-furanmethanol (95), presumably by aHybc rearrangement to 3-butene-l,2-diol before hydroformylation. Later, hydroformylation of butenediol diacetate with a rhodium complex as catalyst gave the acetate of 3-formyl-3-buten-l-ol (96). Hydrogenation in such a system gave 2-methyl-1,4-butanediol (97). [Pg.107]

In the reaction of aHyl alcohol with carbon monoxide using cobalt carbonyl, Co(CO)g as the catalyst, in the presence of a small amount of hydrogen and carbon monoxide under pressure, 9.8 MPa (1420 psi), at 100°C, intramolecular hydroesterification takes place, yielding y-butyrolactone [96-48-0] (16). [Pg.73]

The industrially used homogeneous catalysts for the hydroformylation of higher molecular olefins into aldehydes, which are hydrogenated to the corresponding surfactant alcohols, are cobalt carbonyl [47] or cobalt carbonylItert-phosphine complexes [48]. [Pg.23]

Only a few other cobalt complexes of the type covered in this review (and therefore excluding, for example, the cobalt carbonyls) have been reported to act as catalysts for homogeneous hydrogenation. The complex Co(DMG)2 will catalyze the hydrogenation of benzil (PhCOCOPh) to benzoin (PhCHOHCOPh). When this reaction is carried out in the presence of quinine, the product shows optical activity. The degree of optical purity varies with the nature of the solvent and reaches a maximum of 61.5% in benzene. It was concluded that asymmetric synthesis occurred via the formation of an organocobalt complex in which quinine was coordinated in the trans position (133). Both Co(DMG)2 and cobalamin-cobalt(II) in methanol will catalyze the following reductive methylations ... [Pg.437]

Hydroformylation is an important industrial process carried out using rhodium phosphine or cobalt carbonyl catalysts. The major industrial process using the rhodium catalyst is hydroformylation of propene with synthesis gas (potentially obtainable from a renewable resource, see Chapter 6). The product, butyraldehyde, is formed as a mixture of n- and iso- isomers the n-isomer is the most desired product, being used for conversion to butanol via hydrogenation) and 2-ethylhexanol via aldol condensation and hydrogenation). Butanol is a valuable solvent in many surface coating formulations whilst 2-ethylhexanol is widely used in the production of phthalate plasticizers. [Pg.110]

A typical example of this is the dicobalt octacarbonyl catalyzed hydroformylation of olefins to yield aldehydes. According to the classical mechanism proposed by Heck and Breslow /29/ (Equations 28-31), the cobalt carbonyl reacts with hydrogen to form hydrido cobalt tetracarbonyl, which is in equilibrium with the coordinatively unsaturated HCo(C0)2. The tricarbonyl coordinates the olefin, and rearranges to form the alkyl cobalt carbonyl. [Pg.153]

Maeda and Yoshida (74) found that acrolein cyclic acetals (17-19) could be hydroformylated with cobalt carbonyl catalyst in benzene at 110°C and 200 atm of hydrogen and carbon monoxide. [Pg.36]

The first examples of a homogeneous reduction of this type were reported in 1971. Cobalt carbonyl was found to reduce anhydrides such as acetic anhydride, succinic anhydride and propionic anhydride to mixtures of aldehydes and acids. However, scant experimental details were recorded [94]. In 1975, Lyons reported that [Ru(PPh3)3Cl2] catalyzes the reduction of succinic and phthalic anhydrides to the lactones y-bulyrolaclone and phthalide, respectively [95], The proposed reaction sequence for phthalic anhydride is shown in Scheme 15.15. Conversion of phthalic anhydride was complete in 21 h at 90 °C, but yielded an equal mixture of the lactone, phthalide (TON = 100 TOF 5) and o-phthalic acid, which is presumably formed by hydrolysis of the anhydride by water during lactoniza-tion. Neither acid or lactone were further hydrogenated to any extent using this catalyst system, under these conditions. [Pg.442]

Alkyldiphosphines turned out to be very useful in a different reaction, namely the carbonylation/hydrogenation of ethylene oxide to give 1,3-propanediol also using cobalt catalysts. Interestingly, the ligand contains two phobane units bridged by 1,2-ethenediyl. The process was commercialised by Shell [18]. [Pg.137]

To make butyraldehyde, the precursor for NBA, the so-called Oxo process is used, reacting chemical grade propylene with hydrogen and. carbon monoxide at 250-300°F and 3500-4000 psi. See Figure 14-4.) Under those conditions, both feeds are liquids. The catalyst is an oil-soluble cobalt carbonyl complex dissolved in the propylene. If rhodium-based catalysts or complexes based on rhodium carbonyls and triphenyl phosphine... [Pg.205]

Cyclododecene may be prepared from 1,5,9-cyclododecatriene by the catalytic reduction with Raney nickel and hydrogen diluted with nitrogen, with nickel sulfide on alumina, with cobalt, iron, or nickel in the presence of thiophene, with palladium on charcoal, with palladimn chloride in the presence of water, with palladium on barium sulfate, with cobalt acetate in the presence of cobalt carbonyl, and with cobalt carbonyl and tri- -butyl phosphine. It may also be obtained from the triene by reduction with lithium and ethylamine, by disproportionation, - by epoxidation followed by isomerization to a ketone and WoliT-Kishner reduction, and from cyclododecanone by the reaction of its hydrazone with sodium hydride. ... [Pg.99]

The reductive carbonylation of methanol to acetaldehyde has been possible when catalyzed by cobalt carbonyl species. This represents a "non-ethylene" route to acetaldehyde. Though rhodium may be expected to be substantially more active than cobalt, it is undesirable since hydrogen incorporation is obviously not seen (see equation 20). [Pg.148]

Hydrogenation of acetic anhydride to acetaldehyde (equation 23) has been demonstrated utilizing cobalt carbonyl under one atmosphere of hydrogen. However, the cobalt complex is short lived. A more efficient cobalt catalyzed reaction with substantial catalyst longevity was realized at a temperature of 190 and 3000 psi pressure CO and hydrogen. The main products were equal amounts of EDA and acetic acid. Upon investigation, this reaction was found exceptionally efficient at a more reasonable 1500 psi pressure provided that the temperature was maintained... [Pg.149]

Monometallic ruthenium, bimetallic cobalt-ruthenium and rhodium-ruthenium catalysts coupled with iodide promoters have been recognized as the most active and selective systems for the hydrogenation steps of homologation processes (carbonylation + hydrogenation) of oxygenated substrates alcohols, ethers, esters and carboxylic acids (1,2). [Pg.220]

The behaviour of the ruthenium catalysts is quite different from that previously reported for cobalt carbonyl catalysts, which give a mixture of aldehydes and their acetals by formylation of the alkyl group of the orthoformate (19). The activity of rhodium catalysts, with and without iodide promoters,is limited to the first step of the hydrogenation to diethoxymethane and to a simple carbonylation or formylation of the ethyl groups to propionates and propionaldehyde derivatives (20). [Pg.233]

Evidence was presented that cobalt precursors under the reaction conditions are transformed into cobalt carbonyls.31 Additives such as Lewis bases accelerate the formation of the catalyst.11 [CoH(CO)4] the key catalytic species was shown by infrared (IR) spectroscopy to be formed under hydroformylation conditions32 and was isolated in the reaction of [Co(CO)4]2 and hydrogen.33 [CoH(CO)4] dissociates carbon monoxide to create [CoH(CO)3] [Eq. (7.2)], which is capable of olefin com-plexation because of a ligand vacancy ... [Pg.372]

Rhodium oxide,200 cobalt carbonyl,201 rhodium and ruthenium carbonyls,202 and rhodium compounds203,204 were later found to be effective catalysts. A three-step mechanism with hydroformylation of the alkene to yield an aldehyde in the first step can be written [Eq. (7.24)]. Condensation to form an imine [Eq. (7.25)] (or enamine) and hydrogenation of this intermediate leads to the product amine ... [Pg.386]


See other pages where Cobalt carbonyl hydrogenation is mentioned: [Pg.293]    [Pg.458]    [Pg.380]    [Pg.118]    [Pg.52]    [Pg.378]    [Pg.138]    [Pg.24]    [Pg.1037]    [Pg.146]    [Pg.75]    [Pg.257]    [Pg.359]    [Pg.284]    [Pg.500]    [Pg.21]    [Pg.480]    [Pg.200]    [Pg.87]    [Pg.148]    [Pg.12]    [Pg.339]    [Pg.218]    [Pg.219]    [Pg.442]    [Pg.810]    [Pg.381]    [Pg.334]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Cobalt carbonylation

Cobalt complexes carbonyl compound hydrogenation

Hydrogen carbonylation

© 2024 chempedia.info