Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modifiers alkynes

The chromium carbonyl linkers 1.40 (98) and 1.41 (99) were prepared from commercial triphenylphospine resin and respectively from pre-formed p-arene chromium carbenes and Fischer chromium amino carbenes. Their SP elaboration is followed by cleavage with pyridine at reflux for 2 h (1.40) and with iodine in DCM for 1 h at rt (1.41) both linkers produce the desired compounds in good yields. A similar cobalt carbonyl linker 1.42 (100) was prepared as a mixmre of mono- (1.42a) and bis- (1.42b) phosphine complex, either from pre-formed alkyne complexes on triphenylphosphine resin or by direct alkyne loading on the bisphosphine cobalt complex traceless cleavage was obtained after SP transformations by aerial oxidation (DCM, O2, hp, 72 h, rt) and modified alkynes were released with good yields and... [Pg.21]

With a variety of substituted arylacetylenes, mixtures of mono- and disub-stitutec products were obtained in combined yields of 60-90%, while diacylation was effected in high yield using an excess of acylating agent. The modified alkynes were readily recovered upon treatment of the complexes with ceric ion ... [Pg.12]

Alkyne migration at [MoFeNi(/4 3-// -PhC2C02Pr )(CO)f,(i) -C5H5)2 has been examined " a formal rotation of the alkyne relative to the metal triangle proceeding by a modified windscreen wiper mechanism was proposed (Fig. 73). [Pg.121]

The used Pd/ACF catalyst shows a higher selectivity than the fresh Lindlar catalyst, for example, 94 1% versus 89 + 2%, respectively, at 90% conversion. The higher yield of 1-hexene is 87 + 2% with the used catalyst versus 82 + 3% of the Lindlar in a 1.3-fold shorter reaction time. Higher catalyst activity and selectivity is attributed to Pd size and monodispersity. Alkynes hydrogenation is structure-sensitive. The highest catalytic activity and alkene selectivity are observed with Pd dispersions <20% [26]. This indicates the importance of the Pd size control during the catalyst preparation. This can be achieved via the modified ME technique. [Pg.297]

The utility of the stepwise, double-coupling procedure is demonstrated in the parallel synthesis of Tamoxifen derivatives on solid support [127] (Scheme 1-29). 1-Alkenylboronates thus obtained by a diboration-cross coupling sequence are further coupled with p-silyUodobenzene supported on polymer resin. Using this strategy, each position about the ethylene core is modified by the appropriate choice of alkyne, aryl halide, and cleavage conditions for the synthesis of a library of Tamoxifen derivatives. [Pg.28]

Scheme5-24 Eq. (1) Proposed mechanism for Eq. (2) Stoichiometric reactions relevant to the phosphinic acid-modified palladium-catalyzed proposed mechanism hydrophosphinylation of alkynes. Scheme5-24 Eq. (1) Proposed mechanism for Eq. (2) Stoichiometric reactions relevant to the phosphinic acid-modified palladium-catalyzed proposed mechanism hydrophosphinylation of alkynes.
This reaction typifies the two possibilities of reaction routes for M-catalyzed addition of an S-X (or Se-X) bond to alkyne (a) oxidative addition of the S-X bond to M(0) to form 94, (b) insertion of alkyne into either the M-S or M-X bond to provide 95 or 96 (c) C-X or C-S bond-forming reductive elimination to give 97 (Scheme 7-21). Comparable reaction sequences are also discussed when the Chalk-Harrod mechanism is compared with the modified Chalk-Harrod mechanism in hydrosily-lations [1,3]. The palladium-catalyzed thioboratiori, that is, addition of an S-B bond to an alkyne was reported by Miyaura and Suzuki et al. to furnish the cis-adducts 98 with the sulfur bound to the internal carbon and the boron center to the terminal carbon (Eq. 7.61) [62]. [Pg.242]

A very similar application of the modified Bloch equations was based in the work of Adams and Connelly.4 ESR spectra (Figure 5.8) of [Mo P(0 Me)3 2(MeC = CMc)Cp] show the expected triplet (two equivalent 31P nuclei) at 280 K, but only a doublet at 160 K. At intermediate temperatures, the lines broaden. The interpretation is that the alkyne undergoes a pendulum oscillation, which in the extrema diverts spin density from one or the other phosphite. Interestingly, the diamagnetic cation undergoes a similar motion on the NMR time scale, but then the alkyne undergoes a complete rotation. Thus, analysis of the effect leads to a measure of the rate of the oscillation. The... [Pg.104]

Lactam antibiotics, such as cephalosporins, and penicillins, such as ampicillin (11) and aztreonam, covalently modify their protein targets. Alkyne-functionalized versions of these antibiotics, for example, AmpN (12), were used to probe various penicillin-binding proteins in vitro and in vivo using CC-ABPP [36,37],... [Pg.353]

Wilkinson s catalyst brings about the hydrosilylation of a range of terminal alkenes (1-octene, trimethylvinylsilane) by 2-dimethylsilylpyridine with good regioselectivity for the anti-Markovnikoff product. Both 3-dimethylsilylpyridine and dimethylphenylsilane are less reactive sources of Si-H. In contrast, these two substrates are far more reactive than 2-dimethylsilylpyridine for the hydrosilylation of alkynes by [Pt(CH2 = CHSiMe2)20]/PR3 (R = Ph, Bu ). This difference was explained to be due to the operation of the two different pathways for Si-H addition—the standard Chalk-Harrod pathway with platinum and the modified Chalk-Harrod pathway with rhodium.108... [Pg.281]

Figure 17.3 Maleimide-modified glass slides (1) can be derivatized using two chemoselective ligation reactions to create biotin modifications. In the first step, alkyne-PEG4-cyclopentadiene linkers (2) are added to the maleimide groups using a Diels-Alder reaction. In the second reaction, an azido-PEG4-biotin compound (3) is reacted with the terminal alkyne on the slide using click chemistry to result in another cycloaddition product, a triazole ring. Figure 17.3 Maleimide-modified glass slides (1) can be derivatized using two chemoselective ligation reactions to create biotin modifications. In the first step, alkyne-PEG4-cyclopentadiene linkers (2) are added to the maleimide groups using a Diels-Alder reaction. In the second reaction, an azido-PEG4-biotin compound (3) is reacted with the terminal alkyne on the slide using click chemistry to result in another cycloaddition product, a triazole ring.
Once the protein is modified to contain an alkynyl group at its C-terminal it can be used to covalently link to its click chemistry reactant partner, an azide on the surface of an array. Other azido molecules also can be conjugated with an alkyne-protein to facilitate the detection or capture of the protein using affinity techniques. For instance, an azido-fluorescein reagent can be used to detect fluorescently the expressed protein in complex samples or an azido-biotin... [Pg.685]

Figure 17.13 Expressed proteins containing a thioester intein tag can be specifically modified using a cysteine-alkyne derivative by transthioesterification followed by an internal S - N shift. Figure 17.13 Expressed proteins containing a thioester intein tag can be specifically modified using a cysteine-alkyne derivative by transthioesterification followed by an internal S - N shift.
Figure 17.14 An expressed protein containing a thioester intein tag that was subsequently modified by native chemical ligation to contain an alkyne group then can be labeled using an azido-fluorescein probe by the click chemistry reaction in the presence of Cu1+. Figure 17.14 An expressed protein containing a thioester intein tag that was subsequently modified by native chemical ligation to contain an alkyne group then can be labeled using an azido-fluorescein probe by the click chemistry reaction in the presence of Cu1+.
Figure 17.15 The small carboxylate-alkyne compound 4-pentynoic acid can be used to modify proteins at their amine groups with EDC to provide alkyne sites for click chemistry-mediated conjugation. The subsequent reaction of an azido-PEG-modified gold nanoparticle with the alkynyl-protein in the presence of Cu1+ yields the triazole-coupled protein. Figure 17.15 The small carboxylate-alkyne compound 4-pentynoic acid can be used to modify proteins at their amine groups with EDC to provide alkyne sites for click chemistry-mediated conjugation. The subsequent reaction of an azido-PEG-modified gold nanoparticle with the alkynyl-protein in the presence of Cu1+ yields the triazole-coupled protein.
Figure 18.11 NHS-PEG4-azide can be used to modify an amine-containing molecule to create an amide derivative terminating in azido groups. The azide modifications then can be used in a click chemistry reaction that forms a triazole linkage with an alkyne-containing molecule. Alternatively, the azide derivative can be used in a Staudinger ligation reaction with a phosphine derivative, which results in an amide bond linkage. Figure 18.11 NHS-PEG4-azide can be used to modify an amine-containing molecule to create an amide derivative terminating in azido groups. The azide modifications then can be used in a click chemistry reaction that forms a triazole linkage with an alkyne-containing molecule. Alternatively, the azide derivative can be used in a Staudinger ligation reaction with a phosphine derivative, which results in an amide bond linkage.
Purify the alkyne-modified protein from excess linker by dialysis or gel filtration. The acetylene modification is stable in aqueous solution at this point. [Pg.726]


See other pages where Modifiers alkynes is mentioned: [Pg.353]    [Pg.353]    [Pg.55]    [Pg.214]    [Pg.22]    [Pg.21]    [Pg.12]    [Pg.52]    [Pg.146]    [Pg.187]    [Pg.102]    [Pg.103]    [Pg.37]    [Pg.75]    [Pg.30]    [Pg.353]    [Pg.353]    [Pg.155]    [Pg.193]    [Pg.283]    [Pg.160]    [Pg.386]    [Pg.569]    [Pg.681]    [Pg.682]    [Pg.685]    [Pg.686]    [Pg.687]    [Pg.689]    [Pg.690]    [Pg.722]    [Pg.726]   
See also in sourсe #XX -- [ Pg.390 , Pg.392 , Pg.395 ]




SEARCH



© 2024 chempedia.info