Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cloud separation

When freshly squeezed orange juice is allowed to stand, the suspended pectic compounds ("cloud") separate and settle from the juice. This phenomenon can be prevented by heating the freshly squeezed juice to inactivate the pectin methylesterase, producing a "cooked flavor." Alternatively, additional polygalacturonase can be added to the juice (53). Cloud precipitation is caused by Ca + chelating the pectic acid produced by pectin methylesterase. [Pg.13]

The cloud point, usually between 0 and -10°C, is determined visually (as in NF T 07-105). It is equal to the temperature at which paraffin crystals normally dissolved in the solution of all other components, begin to separate and affect the product clarity. The cloud point can be determined more accurately by differential calorimetry since crystal formation is an exothermic phenomenon, but as of 1993 the methods had not been standardized. [Pg.214]

The tendency to separate is expressed most often by the cloud point, the temperature at which the fuei-alcohol mixture loses its clarity, the first symptom of insolubility. Figure 5.17 gives an example of how the cloud-point temperature changes with the water content for different mixtures of gasoline and methanol. It appears that for a total water content of 500 ppm, that which can be easily observed considering the hydroscopic character of methanol, instability arrives when the temperature approaches 0°C. This situation is unacceptable and is the reason that incorporating methanol in a fuel implies that it be accompanied by a cosolvent. One of the most effective in this domain is tertiary butyl alcohol, TBA. Thus a mixture of 3% methanol and 2% TBA has been used for several years in Germany without noticeable incident. [Pg.244]

The result is that, to a very good approxunation, as treated elsewhere in this Encyclopedia, the nuclei move in a mechanical potential created by the much more rapid motion of the electrons. The electron cloud itself is described by the quantum mechanical theory of electronic structure. Since the electronic and nuclear motion are approximately separable, the electron cloud can be described mathematically by the quantum mechanical theory of electronic structure, in a framework where the nuclei are fixed. The resulting Bom-Oppenlieimer potential energy surface (PES) created by the electrons is the mechanical potential in which the nuclei move. Wlien we speak of the internal motion of molecules, we therefore mean essentially the motion of the nuclei, which contain most of the mass, on the molecular potential energy surface, with the electron cloud rapidly adjusting to the relatively slow nuclear motion. [Pg.55]

There can be subtle but important non-adiabatic effects [14, ll], due to the non-exactness of the separability of the nuclei and electrons. These are treated elsewhere in this Encyclopedia.) The potential fiinction V(R) is detennined by repeatedly solving the quantum mechanical electronic problem at different values of R. Physically, the variation of V(R) is due to the fact that the electronic cloud adjusts to different values of the intemuclear separation in a subtle interplay of mutual particle attractions and repulsions electron-electron repulsions, nuclear-nuclear repulsions and electron-nuclear attractions. [Pg.56]

Electronic spectra are almost always treated within the framework of the Bom-Oppenlieimer approxunation [8] which states that the total wavefiinction of a molecule can be expressed as a product of electronic, vibrational, and rotational wavefiinctions (plus, of course, the translation of the centre of mass which can always be treated separately from the internal coordinates). The physical reason for the separation is that the nuclei are much heavier than the electrons and move much more slowly, so the electron cloud nonnally follows the instantaneous position of the nuclei quite well. The integral of equation (BE 1.1) is over all internal coordinates, both electronic and nuclear. Integration over the rotational wavefiinctions gives rotational selection rules which detemiine the fine structure and band shapes of electronic transitions in gaseous molecules. Rotational selection rules will be discussed below. For molecules in condensed phases the rotational motion is suppressed and replaced by oscillatory and diflfiisional motions. [Pg.1127]

Many solutions of common nonionic surfactants and water separate into two phases when heated above a certain temperature (the cloud point), and some investigators call the phase of greater surfactant concentration, a microemulsion. Thus, there is not even universal agreement that a microemulsion must contain oil. [Pg.147]

When plastic deformation occurs, crystallographic planes sHp past each other. SHp is fackitated by the unique atomic stmcture of metals, which consists of an electron cloud surrounding positive nuclei. This stmcture permits shifting of atomic position without separation of atomic planes and resultant fracture. The stress requked to sHp an atomic plane past an adjacent plane is extremely high if the entire plane moves at the same time. Therefore, the plane moves locally, which gives rise to line defects called dislocations. These dislocations explain strain hardening and many other phenomena. [Pg.230]

Another nonregenerative drying appHcation for molecular sieves is their use as an adsorbent for water and solvent in dual-pane insulated glass windows. The molecular sieve is loaded into the spacer frame used to separate the panes. Once the window has been sealed, low hydrocarbon and water dew points are maintained within the enclosed space for the lifetime of the unit. Consequently, no condensation or fogging occurs within this space to cloud the window. [Pg.456]

Miscible blends of high molecular weight polymers often exhibit LOST behavior (3) blends that are miscible only because of relatively low molecular weights may show UCST behavior (11). The cloud-point temperatures associated with Hquid—Hquid phase separation can often be adequately determined by simple visual observations (39) nevertheless, instmmented light transmission or scattering measurements frequendy are used (49). The cloud point observed maybe a sensitive function of the rate of temperature change used, owing to the kinetics of the phase-separation process (39). [Pg.410]

Recent publications indicate the cloud-point extraction by phases of nonionic surfactant as an effective procedure for preconcentrating and separation of metal ions, organic pollutants and biologically active compounds. The effectiveness of the cloud-point extraction is due to its high selectivity and the possibility to obtain high coefficients of absolute preconcentrating while analyzing small volumes of the sample. Besides, the cloud-point extraction with non-ionic surfactants insures the low-cost, simple and accurate analytic procedures. [Pg.50]

For fluorescence PAH determination in tap water acid-induced cloud point extraction was used. This kind of extraction based on the phase separation into two isotropic liquid phases a concentrated phase containing most of the surfactant (surfactant-rich phase), where the solubilised solutes are exttacted, and an aqueous phase containing a surfactant concenttation closes to the critical micellar concentration. [Pg.116]

Et20 to cloud point and setting aside for the prisms to separate [Koser and Wettach J Org Chem 42 1476 7977 NMR Koser et al. J Org Chem 41 3609 1976]. It has also been crystd from CH2CI2 (needles, m 140-142°) [Neiland and Karele J Org Chem, USSR (Engl Transl) 6 889 1970],... [Pg.267]

Figure 6.1. (a) Atom not subject to external electric field. Centre of electron cloud and nucleus coincident, (b) Electron cloud displacement through application of external electric field, (c) Charged condenser plates separated by vacuum, (d) Condenser plates separated by dielectric... [Pg.111]

Aniline and mixed aniline point (DIN 51 775 modified). It is similar to the cloud point test except that the solvent is aniline, a very polar liquid. The aniline point is defined as the temperature at which a mixture of equal parts of aniline and the resin show the beginning of phase separation (i.e. the onset of clouding). Phase separation for aromatic resins occurs between I5°C and below zero for resins with intermediate aromaticity, it lies between 30 and 50°C and for non-aromatic resins, it is 50 to 100°C. Sometimes the mixed aniline point is used. It is similar to the aniline point except that the solvent is a mixture of one part of aniline and one part of w-heptane. The problem of both procedures is that precipitation of resins can be produced before the cloud is generated. [Pg.617]

A reaction vessel explosion at BASF s resins plant in Cincinnati (July 19, 1990) killed one and injured 71. The BASF facility manufactures acrylic, alkyd, epoxy, and phenol-formaldehyde resins used as can and paper-cup liner coatings. The explosion occurred when a flammable solvent used to clean a reaction vessel vented into the plant and ignited. The cleaning solvent that was not properly vented to a condenser and separator, blew a pressure seal, and fdled the 80-year-old building with a white vapor cloud. [Pg.258]

Figure 4.23 illustrates two common blast-generators chemical plants and rail-car switching yards (Baker et al. 1983), each blanketed in a large vapor cloud. The blast effects from each should be considered separately. [Pg.129]

This calculation takes into account only the blast from the expansion of vessel contents. In fact, this blast may be followed by one from a vapor cloud explosion. This possibility must be considered separately with the methods presented in earlier chapters. [Pg.305]

Thunderstorms (cumulonimbus clouds) come in many sizes and shapes, ranging from small air-mass thunderstorms to large supcrcells. Thunderstorms are influenced by the surrounding atmosphere and nearby convective activity. Sometimes a thunderstorm is composed of a single, isolated cumulonimbus cloud. At other times, cumulonimbus clouds are so numerous that they form a continuous sheet, losing any separate identity. [Pg.89]


See other pages where Cloud separation is mentioned: [Pg.477]    [Pg.298]    [Pg.477]    [Pg.344]    [Pg.477]    [Pg.298]    [Pg.477]    [Pg.344]    [Pg.73]    [Pg.55]    [Pg.2585]    [Pg.124]    [Pg.212]    [Pg.251]    [Pg.112]    [Pg.240]    [Pg.302]    [Pg.396]    [Pg.250]    [Pg.148]    [Pg.263]    [Pg.276]    [Pg.594]    [Pg.68]    [Pg.25]    [Pg.430]    [Pg.136]    [Pg.888]    [Pg.319]    [Pg.112]    [Pg.126]    [Pg.268]    [Pg.340]    [Pg.371]    [Pg.112]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Cloud point separations

Cloud point, phase separation

From Cloud Point to Associative Phase Separation of Photopolymers

© 2024 chempedia.info