Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Classic Mechanics

In a typical engineering design, a mechanical component is subject to a stress below the elastic limit. Therefore, Hook s law applies in most engineering analyses and the material will linearly extend along the direction where an external load is applied. The material will elastically recover to the original dimensions after the removal of the applied load. When the applied stress is beyond the elastic limit, a permanent plastic deformation will remain. [Pg.75]

The nominal normal stress in the axial direction, also referred to as the engineering stress, is defined by Equation 3.6  [Pg.76]

In contrast to engineering stress, the true stress actually imposed on to a tensile specimen increases continuously as the true cross-sechonal area. A, shrinks during the test. The true stress, 0(, is defined by Equation 3.9 as force per unit true area at that instant, where P and A are force and area, respechvely  [Pg.78]

Similar to the true stress, the true or natural strain, (, at a point is a local strain calculated against the actual length at the point of interest and at that instant. It is mathematically defined by Equation 3.10  [Pg.78]

For small 9 values in radians, tan9 0, and shear strains are often referred to as angles of rotation. Finally, it is worth noting that the tensile properties are functions of specimen size, loading rate, and testing environment, such as temperature. The accuracy of comparative analysis based on tensile properties in reverse engineering directly relies on careful verification of these test parameters. [Pg.79]


In classical mechanics, the state of the system may be completely specified by the set of Cartesian particle coordinates r. and velocities dr./dt at any given time. These evolve according to Newton s equations of motion. In principle, one can write down equations involving the state variables and forces acting on the particles which can be solved to give the location and velocity of each particle at any later (or earlier) time t, provided one knows the precise state of the classical system at time t. In quantum mechanics, the state of the system at time t is instead described by a well behaved mathematical fiinction of the particle coordinates q- rather than a simple list of positions and velocities. [Pg.5]

The fifth postulate and its corollary are extremely important concepts. Unlike classical mechanics, where everything can in principle be known with precision, one can generally talk only about the probabilities associated with each member of a set of possible outcomes in quantum mechanics. By making a measurement of the quantity A, all that can be said with certainty is that one of the eigenvalues of /4 will be observed, and its probability can be calculated precisely. However, if it happens that the wavefiinction corresponds to one of the eigenfunctions of the operator A, then and only then is the outcome of the experiment certain the measured value of A will be the corresponding eigenvalue. [Pg.11]

Up until now, little has been said about time. In classical mechanics, complete knowledge about the system at any time t suffices to predict with absolute certainty the properties of the system at any other time t. The situation is quite different in quantum mechanics, however, as it is not possible to know everything about the system at any time t. Nevertheless, the temporal behavior of a quantum-mechanical system evolves in a well defined way drat depends on the Hamiltonian operator and the wavefiinction T" according to the last postulate... [Pg.11]

In classical mechanics, it is certainly possible for a system subject to dissipative forces such as friction to come to rest. For example, a marble rolling in a parabola lined with sandpaper will eventually lose its kinetic energy and come to rest at the bottom. Rather remarkably, making a measurement of E that coincides with... [Pg.20]

To nnderstand the internal molecnlar motions, we have placed great store in classical mechanics to obtain a picture of the dynamics of the molecnle and to predict associated patterns that can be observed in quantum spectra. Of course, the classical picture is at best an imprecise image, becanse the molecnlar dynamics are intrinsically quantum mechanical. Nonetheless, the classical metaphor mnst surely possess a large kernel of truth. The classical stnichire brought out by the bifiircation analysis has accounted for real patterns seen in wavefimctions and also for patterns observed in spectra, snch as the existence of local mode doublets, and the... [Pg.75]

Goldstein H 1980 Classical Mechanics (Reading, MA Addison-Wesley)... [Pg.82]

This is known as the Stefan-Boltzmaim law of radiation. If in this calculation of total energy U one uses the classical equipartition result = k T, one encounters the integral f da 03 which is infinite. This divergence, which is the Rayleigh-Jeans result, was one of the historical results which collectively led to the inevitability of a quantum hypothesis. This divergence is also the cause of the infinite emissivity prediction for a black body according to classical mechanics. [Pg.410]

Arnoid V i and Avez A 1968 Ergodic Problems of Classical Mechanics (New York Ben]amin)... [Pg.691]

The discussion thus far in this chapter has been centred on classical mechanics. However, in many systems, an explicit quantum treatment is required (not to mention the fact that it is the correct law of physics). This statement is particularly true for proton and electron transfer reactions in chemistry, as well as for reactions involving high-frequency vibrations. [Pg.891]

As discussed above, to identify states of the system as those for the reactant A, a dividing surface is placed at the potential energy barrier region of the potential energy surface. This is a classical mechanical construct and classical statistical mechanics is used to derive the RRKM k(E) [4]. [Pg.1011]

The classical mechanical RRKM k(E) takes a very simple fonn, if the internal degrees of freedom for the reactant and transition state are assumed to be hamionic oscillators. The classical sum of states for s harmonic oscillators is [16]... [Pg.1017]

The bulk of the infomiation about anhannonicity has come from classical mechanical calculations. As described above, the aidiannonic RRKM rate constant for an analytic potential energy fiinction may be detemiined from either equation (A3.12.4) [13] or equation (A3.12.24) [46] by sampling a microcanonical ensemble. This rate constant and the one calculated from the hamionic frequencies for the analytic potential give the aidiannonic correctiony j ( , J) in equation (A3.12.41). The transition state s aidiannonic classical sum of states is found from the phase space integral... [Pg.1021]

Hase W L and Buckowski D G 1982 Dynamics of ethyl radical decomposition. II. Applicability of classical mechanics to large-molecule unimolecular reaction dynamics J. Comp. Chem. 3 335-43... [Pg.1039]

Vibrational motion is thus an important primary step in a general reaction mechanism and detailed investigation of this motion is of utmost relevance for our understanding of the dynamics of chemical reactions. In classical mechanics, vibrational motion is described by the time evolution and l t) of general internal position and momentum coordinates. These time dependent fiinctions are solutions of the classical equations of motion, e.g. Newton s equations for given initial conditions and I Iq) = Pq. [Pg.1056]

As in classical mechanics, the outcome of time-dependent quantum dynamics and, in particular, the occurrence of IVR in polyatomic molecules, depends both on the Flamiltonian and the initial conditions, i.e. the initial quantum mechanical state I /(tQ)). We focus here on the time-dependent aspects of IVR, and in this case such initial conditions always correspond to the preparation, at a time of superposition states of molecular (spectroscopic) eigenstates involving at least two distinct vibrational energy levels. Strictly, IVR occurs if these levels involve at least two distinct... [Pg.1058]

There are two basic physical phenomena which govern atomic collisions in the keV range. First, repulsive interatomic interactions, described by the laws of classical mechanics, control the scattering and recoiling trajectories. Second, electronic transition probabilities, described by the laws of quantum mechanics, control the ion-surface charge exchange process. [Pg.1801]

Atom-surface interactions are intrinsically many-body problems which are known to have no analytical solutions. Due to the shorter de Broglie wavelengdi of an energetic ion than solid interatomic spacings, the energetic atom-surface interaction problem can be treated by classical mechanics. In the classical mechanical... [Pg.1808]

All these observations tend to favour the Verlet algoritlnn in one fonn or another, and we look closely at this in the following sections. For historical reasons only, we mention the more general class of predictor-corrector methods which have been optimized for classical mechanics simulations, [40, 4T] further details are available elsewhere [7, 42, 43]. [Pg.2250]

Figure C3.5.6. The computed Fourier transfonn at frequency co, of tire classical mechanical force-force correlation function for liquid O2 at 70 K from [M]- The VER rate is proportional to the value of ( " at tire O2... Figure C3.5.6. The computed Fourier transfonn at frequency co, of tire classical mechanical force-force correlation function for liquid O2 at 70 K from [M]- The VER rate is proportional to the value of ( " at tire O2...
It is convenient to analyse tliese rate equations from a dynamical systems point of view similar to tliat used in classical mechanics where one follows tire trajectories of particles in phase space. For tire chemical rate law (C3.6.2) tire phase space , conventionally denoted by F, is -dimensional and tire chemical concentrations, CpC2,- are taken as ortliogonal coordinates of F, ratlier tlian tire particle positions and velocities used as tire coordinates in mechanics. In analogy to classical mechanical systems, as tire concentrations evolve in time tliey will trace out a trajectory in F. Since tire velocity functions in tire system of ODEs (C3.6.2) do not depend explicitly on time, a given initial condition in F will always produce tire same trajectory. The vector R of velocity functions in (C3.6.2) defines a phase-space (or trajectory) flow and in it is often convenient to tliink of tliese ODEs as describing tire motion of a fluid in F with velocity field/ (c p). [Pg.3055]

The relative shift of the peak position of the rotational distiibution in the presence of a vector potential thus confirms the effect of the geometric phase for the D + H2 system displaying conical intersections. The most important aspect of our calculation is that we can also see this effect by using classical mechanics and, with respect to the quantum mechanical calculation, the computer time is almost negligible in our calculation. This observation is important for heavier systems, where the quantum calculations ai e even more troublesome and where the use of classical mechanics is also more justified. [Pg.58]

It is possible to parametarize the time-dependent Schrddinger equation in such a fashion that the equations of motion for the parameters appear as classical equations of motion, however, with a potential that is in principle more general than that used in ordinary Newtonian mechanics. However, it is important that the method is still exact and general even if the trajectories aie propagated by using the ordinary classical mechanical equations of motion. [Pg.73]

H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1950. [Pg.92]


See other pages where Classic Mechanics is mentioned: [Pg.456]    [Pg.6]    [Pg.72]    [Pg.231]    [Pg.382]    [Pg.398]    [Pg.604]    [Pg.686]    [Pg.700]    [Pg.1000]    [Pg.1024]    [Pg.1056]    [Pg.1800]    [Pg.2249]    [Pg.2253]    [Pg.2313]    [Pg.3042]    [Pg.3042]    [Pg.40]    [Pg.44]    [Pg.58]    [Pg.59]    [Pg.73]    [Pg.96]    [Pg.251]    [Pg.272]   


SEARCH



Classical mechanical

Classical mechanics

© 2024 chempedia.info