Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinnamaldehyde, selective

A new method of synthesis of selective platinum catalysts for the hydrogenation of unsaturated carbonyl compounds is presented. Platinum was deposited on the supports tailored with the monolayer of transition metal oxide. Selectivity of these catalysts strongly depended on the type of inorganic support as well as on the type of transition metal in the monolayer. Catalysts were tested in the hydrogenation of furfural, crotonaldehyde and cinnamaldehyde. Selectivity of the synthesis of the appropriate unsaturated alcohols was enhanced when compared with the reactions performed over classical Pt-metal oxide catalysts. [Pg.787]

Hydrogenation of cinnamaldehyde has been studied extensively since selectivity has often been an issue. Under mild conditions the carbonyl group is reduced giving cinnamyl alcohol, whereas at elevated temperatures complete reduction to 3-phenylpropanol [122-97 ] results. It is possible to saturate the double bond without concomitant reduction of the carbonyl group through selective hydrogenation with a ferrous chloride-activated palladium catalyst (30), thereby producing 3-phenylpropanol [104-53-0]. [Pg.175]

When heated in the presence of a carboxyHc acid, cinnamyl alcohol is converted to the corresponding ester. Oxidation to cinnamaldehyde is readily accompHshed under Oppenauer conditions with furfural as a hydrogen acceptor in the presence of aluminum isopropoxide (44). Cinnamic acid is produced directly with strong oxidants such as chromic acid and nickel peroxide. The use of t-butyl hydroperoxide with vanadium pentoxide catalysis offers a selective method for epoxidation of the olefinic double bond of cinnamyl alcohol (45). [Pg.175]

In some ca.ses the use of a two-phase system may allow a change in the selectivity. Thus, Joo et al. (1998) have shown that water-soluble Ru hydrides (sulphanatophenylphosphine Ru complexes) give different products in the hydrogenation of cinnamaldehyde with variation in the pH of the aqueous media. At a pH greater than 7.2, cinnamyl alcohol is formed and at a pH less than 5 saturated aldehyde is formed. [Pg.143]

We have shown that the direct arylation of acrolein toward the synthesis of cinnamaldehyde derivatives was an efficient procedure. Using the palladacycle 1 as catalyst, substituted aldehydes 3 were prepared with up to 87% isolated yield from condensed aiyl bromides (Scheme 21.1, Route 1) that was extended successfully to heteroaiyl bromides, like bromoquinolines (6). Alternatively, the acrolein diethyl acetal was used as olefin and a selective formation of the saturated ester 4 was attained under the same reaction conditions (Scheme 21.1, Route 2). The expected aldehydes 3 were, however, obtained from most of the aiyl halides used under modified conditions. It was shown that the addition of n-Bu4NOAc in the medium... [Pg.186]

In keeping with the earlier work (1), the activity of the catalysts is reported as the reciprocal of the time (hour) taken for 50% conversion of cinnamaldehyde. The selectivity for a particular product is defined as ... [Pg.72]

Of particular interest are oxidations of unsaturated alcohols, for example, oxidation of cinnamyl alcohol to cinnamaldehyde,74,75 and special promoters have been added to increase selectivity (Fig. 6.13).75 Although the functions of these promoters are still not fully undestood, some authors attribute their increased selectivity to physical blocking of reaction sites. This blocking reduces the size of the active site ensemble and suppresses the tendency for alcohols to strongly adsorb and dissociate on Pt.75... [Pg.240]

FIGURE 6.13 Bi promotion of Pt to increase selectivity of cinnamyl alcohol to cinnamaldehyde.75... [Pg.240]

Hajek J, Maki-Arvela P, Toukoniitty E, Kumar N, Salmi T, Muizin DY (2004) The effect of chemical reducing agents in the synthesis of sol-gel Ru-Sn catalysts selective hydrogenation of cinnamaldehyde. J Sol-Gel Sci Technol 30 187-195... [Pg.167]

We recently reported a modified Meerwein-Ponndorf-Verley reduction in which low-boiling alcohols such as EtOH and w-PrOH, but preferably i-PrOH, were used at temperatures near 225 °C in the absence of aluminum alkoxides [42]. The carbonyl moiety of an olefinic aldehyde such as cinnamaldehyde was reduced selectively to the alcohol without the carbon-carbon double bond being affected (Scheme 2.7). Since base was not present, aldol and Claisen-Schmidt condensations were avoided. [Pg.46]

A brief exposure of diacetate derivatives of aromatic aldehydes to MW irradiation on neutral alumina surface rapidly regenerates aldehydes (Scheme 6.5) [36], The selectivity in these deprotection reactions is achievable by merely adjusting the time of irradiation. As an example, for molecules bearing acetoxy functionality (R = OAc), the aldehyde diacetate is selectively removed in 30 s, whereas an extended period of 2 min is required to cleave both the diacetate and ester groups. The yields obtained are better than those possible by conventional heating methods and the procedure is applicable to compounds bearing olefmic moieties such as cinnamaldehyde diacetate [36],... [Pg.185]

Selection of the reaction conditions brings about a complete reversal between 1,2- and 1,4-addition in the reaction of cinnamaldehyde (Scheme 83).386... [Pg.448]

In 1996, Liu et al. reported the selective hydrogenation of cinnamaldehyde, an a,/ -unsaturated aldehyde, to cinnamyl alcohol, an a,/ -unsaturated alcohol, by means of PVP-protected Pt/Co bimetallic colloids prepared by the polyol process [111]. The colloids were obtained as a dark-brown homogeneous dispersion in a mixture of ethylene glycol and diethylene glycol, and characterized by TEM and XRD. These authors prepared different samples of nanoparticles with Pt Co ratios of 3 1 and 1 1, the mean diameters of which measured 1.7 and 2.2 nm, respectively. These colloidal systems were also compared with the single metal-... [Pg.245]

The catalytic system of [Ir(COD)Cl]2 with an excess of the bulky phosphine P(o-MeOPh)3 under transfer hydrogenation conditions of propan-2-ol and KOH was used successfully in the selective hydrogenation of cinnamaldehyde (Scheme 15.4) [4]. Selectivity and activity were found to increase with increasing P/Ir ratios, and complete conversion was achieved in as little as 5 minutes (turnover frequency (TOF) 6000 IT1). [Pg.415]

The selectivities in forming cinnamyl alcohol from cinnamaldehyde using these catalysts were poor, and generally resulted in the formation of the saturated aldehyde. This could be overcome by the use of a large excess of phosphine, though at the expense of yield. The same group have demonstrated that ruthenium analogues of the BDNA complex are more active and selective [7]. [Pg.417]

It has been shown previously how water-soluble rhodium Rh-TPPTS catalysts allow for efficient aldehyde reduction, although chemoselectivity favors the olefmic bond in the case of unsaturated aldehydes [17]. The analogous ruthenium complex shows selectivity towards the unsaturated alcohol in the case of crotonaldehyde and cinnamaldehyde [31]. [Pg.423]

In another example, undecanal was hydrogenated to undecanol with a water-soluble catalyst in the presence of chemically modified yS-cyclodextrins, which facilitated the mass transfer between the aqueous and the organic phase [134]. Hydrogenation of cinnamaldehyde with very high (99%) selectivity to cinnamyl alcohol was also performed in water scC02 biphasic systems [135] which al-... [Pg.1351]

Recently, it has been shown that ultrasonic agitation during hydrogenation reactions over skeletal nickel can slow catalyst deactivation [122-124], Furthermore, ultrasonic waves can also significantly increase the reaction rate and selectivity of these reactions [123,124], Cavitations form in the liquid reaction medium because of the ultrasonic agitation, and subsequently collapse with intense localized temperature and pressure. It is these extreme conditions that affect the chemical reactions. Various reactions have been tested over skeletal catalysts, including xylose to xylitol, citral to citronellal and citronellol, cinnamaldehyde to benzenepropanol, and the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Ultrasound supported catalysis has been known for some time and is not peculiar to skeletal catalysts [125] however, research with skeletal catalysts is relatively recent and an active area. [Pg.151]

Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydiocinnamaldehyde. Applied Catalysis A General 288 203-210. [Pg.265]

A typical probe reaction for estimating catalytic properties in selective hydrogenations is the hydrogenation of cinnamaldehyde. This molecule contains both a C=C and a C=0 double bond, thus the formation of hydrocinnamaldehyde and/or cinnamyl alcohol by reduction of the one or the other, or the formation of phenyl propanol in the case of complete reduction may indicate the potential of the catalyst for other fine chemical transformations. Indeed, this reaction was one of the first to be tested by CNT-supported catalysts [120]. Noble metals show a high activity in this reaction and... [Pg.416]

Fig. 15.15 Cinnamyl alcohol selectivity as a function of conversion in the selective hydrogenation of cinnamaldehyde over differently supported Ru catalysts. Reactions conditions as listed in Tab. 15.4. Data compiled from literature [120,122,123,126], HSAG high-surface area graphite AC activated carbon. Fig. 15.15 Cinnamyl alcohol selectivity as a function of conversion in the selective hydrogenation of cinnamaldehyde over differently supported Ru catalysts. Reactions conditions as listed in Tab. 15.4. Data compiled from literature [120,122,123,126], HSAG high-surface area graphite AC activated carbon.
It is convenient to investigate the selectivity provided by a given catalyst in the hydrogenation of / rans-cinnamaldehyde (3-phenyl-2-propenal, A) which can yield three products cinnamyl alcohol (3-phenyl-2-propenol, B), dihydrocinnamaldehyde (3-phenylpropanal, Q and 3-phenylpropanol (D) (Scheme 3.18). Data of a few catalytie systems are eollected into Table 3.8. [Pg.96]


See other pages where Cinnamaldehyde, selective is mentioned: [Pg.199]    [Pg.199]    [Pg.8]    [Pg.172]    [Pg.223]    [Pg.106]    [Pg.122]    [Pg.71]    [Pg.71]    [Pg.74]    [Pg.74]    [Pg.141]    [Pg.246]    [Pg.118]    [Pg.123]    [Pg.416]    [Pg.417]    [Pg.422]    [Pg.425]    [Pg.1344]    [Pg.1496]    [Pg.77]    [Pg.186]    [Pg.56]    [Pg.63]    [Pg.168]    [Pg.92]    [Pg.224]    [Pg.100]   
See also in sourсe #XX -- [ Pg.239 , Pg.456 , Pg.457 , Pg.459 ]




SEARCH



Cinnamaldehyde

© 2024 chempedia.info