Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinnamaldehyde 0-methyl

Steele, W.V., Chirico, R.D., Cowell, A.B., Knipmeyer, S.E., and Nguyen, A. Thermodynamic properties and ideal-gas enthalpies of formation for trans-methyl cinnamate, a-methyl cinnamaldehyde, methyl methacrylate, l-non3me, trimethylacetic acid, trimethylacetic anhydride, and ethyl trimethyl acetate, J. Chem. Eng. Data, 47(4) 700-714, 2002. [Pg.1728]

Aromatic aldehydes (100), eg, cinnamaldehyde, and ketones (101) react ia a similar manner (eq. 4). Ketones containing reactive methyl or methylene groups give with succiaates, ia the presence of sodium hydride, both the Stobbe condensation and the formation of diketones by a Claisen mechanism (102) (eq. 5). [Pg.536]

Pyrolytic Decomposition. The pyrolytic decomposition at 350—460°C of castor oil or the methyl ester of ricinoleic acid spHts the ricinoleate molecule at the hydroxyl group forming heptaldehyde and undecylenic acids. Heptaldehyde, used in the manufacture of synthetic flavors and fragrances (see Elavors and spices Perfumes) may also be converted to heptanoic acid by various oxidation techniques and to heptyl alcohol by catalytic hydrogenation. When heptaldehyde reacts with benzaldehyde, amyl cinnamic aldehyde is produced (see Cinnamic acid, cinnamaldehyde, and cinnamyl... [Pg.154]

Hydrogenation of 2-methyl-3-phenyl-4-isoxazoline surprisingly yielded cinnamaldehyde <74CPB70). [Pg.45]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

The disilanickela complex 21 was also found to be a good catalyst for the dehydrogenative double silylation of aldehydes. The nickel-catalyzed reactions of 1,2-bis(dimethylsilyl)carborane 11 with aldehydes such as isobutyraldehyde, trimethylacetaldehyde, hexanal, and benzaldehyde afforded 5,6-carboranylene-2-oxa-l,4-disilacyclohexane.32 34 36 The dehydrogenative 1,4-double silylation of methacrolein and tram-4-phenyl-3-buten-2-one in the presence of a catalytic amount ofNi(PEt3)4 also took place under similar conditions. In contrast, the reaction of 11 with a-methyl-tran.s-cinnamaldehyde and irans-cinnamaldehyde under... [Pg.68]

Cinnamaldehyde, 3134 f Crotonaldehyde, 1516 f Cyclopropyl methyl ether, 1608 f Diallyl ether, 2431... [Pg.330]

In the Mukaiyama aldol additions of trimethyl-(l-phenyl-propenyloxy)-silane to give benzaldehyde and cinnamaldehyde catalyzed by 7 mol% supported scandium catalyst, a 1 1 mixture of diastereomers was obtained. Again, the dendritic catalyst could be recycled easily without any loss in performance. The scandium cross-linked dendritic material appeared to be an efficient catalyst for the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene. The Diels-Alder adduct was formed in dichloromethane at 0°C in 79% yield with an endo/exo ratio of 85 15. The material was also used as a Friedel-Crafts acylation catalyst (contain-ing7mol% scandium) for the formation of / -methoxyacetophenone (in a 73% yield) from anisole, acetic acid anhydride, and lithium perchlorate at 50°C in nitromethane. [Pg.126]

There are some cases where both types of photocycloaddition take place. For example, cinnamaldehyde and crotonaldehyde yield, upon irradiation with 2-methyl-2-butene, both the oxetane and the cyclobutane products.26 In marked contrast, mesityl oxide, as similar as it would appear to be to crotonaldehyde (Table I), is stable to irradiation in the presence of both isobutylene and isopropanol.37,74 These differences in reactivity of a,/9-unsaturated carbonyl compounds have been attributed to conformational (that is, s-cis or s-trans) differences.74... [Pg.325]

Photocyclization of the condensed adduct 56 between 2-methyl-4-oxoquinoline and cinnamaldehyde gives the acridine 57 <99ZN(B)1337>. This approach is notable for its application to the synthesis of the hitherto unknown 1-phenyl and 1-naphthacridones. [Pg.251]

Benzalacetone has been obtained in small yield by dry distillation of a mixture of calcium acetate and calcium cinnamate 1 by heating the sodium derivative of cinnamaldehyde with methyl iodide 2 by heating cinnamaldehyde and methyl alcohol with zinc chloride 2 by heating acetone and benzaldehyde with acetic... [Pg.18]

Methyl cinnamate Cinnamaldehyde 2-Phenylethanol 1-Phenylethanol Phenylacetaldehyde... [Pg.155]

Under comparable conditions the submitters found that the corresponding dihydropyran derivatives were similarly obtained by the condensation of acrolein with methyl vinyl ether in 80-81% yield, with ethyl vinyl ether (77-85% yield), with w-butyl vinyl ether (82% yield), with ethyl isopropenyl ether (50% yield), and with w-butyl cyclohexenyl ether (40% yield). Other <, /3-un-saturated carbonyl compounds that have thus been condensed with ethyl vinyl ether are crotonaldehyde (87% yield), meth-acrolein (40% yield), a-ethyh/3-n-propylacrolein (54% yield), cinnamaldehyde (60% yield), /3-furylacrolein (85% yield), methyl vinyl ketone (50% yield), benzalacetone (75% yield), and benzal-acetophenone (74% yield). [Pg.30]

Melon Cinnamaldehyde Ethyl hexadienoate Methyl amyl ketone Octyl butvrate. [Pg.648]

The determination of aldehydes and ketones is of importance in the analysis of those essential oils characterised especially by aldehydic or ketoruc principles, e g.,the citral contained in lemon and lemongrass oils, citronellal in citronella Oil and some eucalyptus oils, benzaldehyde in bitter almond oil, salicylaldehyde in meadow-sweet oil, anisaldehyde in aniseed and fennel oils, cuminaldehyde m cumin oil, cinnamaldehyde in cinnamon oil, carvone in caraway oil, pulegone in pennyroyal oil and methyl nonyl ketone in rue oil The determination of the aldehydes and ketones presents, however, difficulties and the above methods are moderately exact in only a few cases, especially when the content of aldehydes or ketones is considerable The bisulphite method is applicable particularly to the determination of cinnamaldehyde and benzaldehyde in cinnamon oil and bitter almond oil, and, up to a certain pomt, to that of citral in lemongrass Oil. The sulphite method gives good results in the same cases and for the determination of carvone and pulegone... [Pg.282]


See other pages where Cinnamaldehyde 0-methyl is mentioned: [Pg.39]    [Pg.76]    [Pg.200]    [Pg.76]    [Pg.127]    [Pg.205]    [Pg.125]    [Pg.1165]    [Pg.53]    [Pg.246]    [Pg.1286]    [Pg.88]    [Pg.63]    [Pg.825]    [Pg.62]    [Pg.56]    [Pg.216]    [Pg.261]    [Pg.2]    [Pg.316]    [Pg.181]    [Pg.89]    [Pg.148]   
See also in sourсe #XX -- [ Pg.1018 ]




SEARCH



Cinnamaldehyde

© 2024 chempedia.info