Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona alkaloid esters

This asymmetric dihydroxylation problem was first solved by the use of cinchona alkaloid esters (16 and 17 R = p-ClC6H4) together with a catalytic amount of osmium tetroxide.142143 The alkaloid esters act as pseudoenantiomeric ligands (Scheme 9.19).144 144 They can also be supported on a... [Pg.133]

Enantioselectively introducing fluorine atom into small organic compounds is of great importance for life sciences and high-performance materials. To this end, a fluorous cinchona alkaloid ester 29 was developed as an organocatalyst for the asymmetric fluorination of p-ketoesters (Scheme 7.34) [50]. The fluorous catalyst... [Pg.280]

Scheme 7.34 Fluorous cinchona alkaloid ester-catalyzed asymmetric fluorination. Scheme 7.34 Fluorous cinchona alkaloid ester-catalyzed asymmetric fluorination.
A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

Azirines can be prepared in optically enriched form by the asymmetric Neber reaction mediated by Cinchona alkaloids. Thus, ketoxime tosylates 173, derived from 3-oxocarhoxylic esters, are converted to the azirine carboxylic esters 174 in the presence of a large excess of potassium carbonate and a catalytic amount of quinidine. The asymmetric bias is believed to be conferred on the substrate by strong hydrogen bonding via the catalyst hydroxyl group <96JA8491>. [Pg.61]

Interestingly, certain chiral tertiary bases, viz., the Cinchona alkaloids, result in an asymmetric 1,3-elimination to give enantiomerically enriched azirine esters 29 (Scheme 15). The best results were obtained with quinidine in toluene as the solvent at a rather high dilution (2 mg mL ) at 0 °C. In an alcoholic solvent no asymmetric conversion was observed. It is of importance to note that the pseudoenantiomers of the alkaloid bases gave opposite antipodes of the azirine ester, whereby quinidine leads to the predominant formation of the (k)-enan-tiomer (ee = -80%). To explain this asymmetric Neber reaction, it is suggested... [Pg.103]

Catalytic asymmetric hydrogenation is a relatively developed process compared to other asymmetric processes practised today. Efforts in this direction have already been made. The first report in this respect is the use of Pd on natural silk for hydrogenating oximes and oxazolones with optical yields of about 36%. Izumi and Sachtler have shown that a Ni catalyst modified with (i ,.R)-tartaric acid can be used for the hydrogenation of methylacetoacetate to methyl-3-hydroxybutyrate. The group of Orito in Japan (1979) and Blaser and co-workers at Ciba-Geigy (1988) have reported the use of a cinchona alkaloid modified Pt/AlaO.i catalyst for the enantioselective hydrogenation of a-keto-esters such as methylpyruvate and ethylpyruvate to optically active (/f)-methylacetate and (7 )-ethylacetate. [Pg.175]

The enantioselective hydrogenation of prochiral substances bearing an activated group, such as an ester, an acid or an amide, is often an important step in the industrial synthesis of fine and pharmaceutical products. In addition to the hydrogenation of /5-ketoesters into optically pure products with Raney nickel modified by tartaric acid [117], the asymmetric reduction of a-ketoesters on heterogeneous platinum catalysts modified by cinchona alkaloids (cinchonidine and cinchonine) was reported for the first time by Orito and coworkers [118-121]. Asymmetric catalysis on solid surfaces remains a very important research area for a better mechanistic understanding of the interaction between the substrate, the modifier and the catalyst [122-125], although excellent results in terms of enantiomeric excesses (up to 97%) have been obtained in the reduction of ethyl pyruvate under optimum reaction conditions with these Pt/cinchona systems [126-128],... [Pg.249]

The first attempt to effect the asymmetric cw-dihydroxylation of olefins with osmium tetroxide was reported in 1980 by Hentges and Sharpless.54 Taking into consideration that the rate of osmium(VI) ester formation can be accelerated by nucleophilic ligands such as pyridine, Hentges and Sharpless used 1-2-(2-menthyl)-pyridine as a chiral ligand. However, the diols obtained in this way were of low enantiomeric excess (3-18% ee only). The low ee was attributed to the instability of the osmium tetroxide chiral pyridine complexes. As a result, the naturally occurring cinchona alkaloids quinine and quinidine were derived to dihydroquinine and dihydroquinidine acetate and were selected as chiral... [Pg.221]

The most successful modifier is cinchonidine and its enantiomer cinchonine, but some work in expanding the repertoire of substrate/modifier/catalyst combinations has been reported (S)-(-)-l-(l-naphthyl)ethylamine or (//)-1 -(I -naphth T)eth Tamine for Pt/alumina [108,231], derivatives of cinchona alkaloid such as 10,11-dihydrocinchonidine [36,71], 2-phenyl-9-deoxy-10, 11-dihydrocinchonidine [55], and O-methyl-cinchonidine for Pt/alumina [133], ephedrine for Pd/alumina [107], (-)-dihydroapovincaminic acid ethyl ester (-)-DHVIN for Pd/TiOz [122], (-)-dihydrovinpocetine for Pt/alumina [42], chiral amines such as 1 -(1 -naphtln I)-2-(I -pyrro 1 idiny 1) ethanol, l-(9-anthracenyl)-2-(l-pyrrolidinyl)ethanol, l-(9-triptycenyl)-2-(l-pyrrol idi nyl)cthanol, (Z )-2-(l-pyrrolidinyl)-l-(l-naphthyl)ethanol for Pt/alumina [37,116], D- and L-histidine and methyl esters of d- and L-tryptophan for Pt/alumina [35], morphine alkaloids [113],... [Pg.511]

Much work [42] has been devoted to cinchona alkaloid modified Pd and Pt catalysts in the enantioselective hydrogenation of a-keto esters such as ethyl pyruvate (Scheme 5.11). Optimal formulation and conditions include supported Pt, the inexpensive (—)-cinchonidine, acetic acid as solvent, 25 °C and 10-70 bar H2. Presently, the highest e.e. is 97.6% [to (R)-ethyl lactate]. [Pg.114]

Alcoholysis of meso-cycYic anhydrides offers a versatile route to succinate and glu-tarate half-esters. Although a number of stoichiometric approaches to this problem have been investigated, a successful catalytic version of this reaction appeared as recently as 2003. ° Bolm and coworkers have developed a protocol for the metha-nolysis of a variety of succinic anhydrides using cinchona alkaloids [Eq. (10.50)]. The reaction may be made catalytic in alkaloid when pentamethylpiperidine is used as a stoichiometric additive. A moderate decrease in enantioselectivity is observed in a number of cases, although excellent selectivities are still attainable. More problematic is the reaction time (6 days under catalytic conditions) ... [Pg.300]

The first organocatalyzed conjugate addition of a-substituted p-ketoester to a,P-unsaturated ketones was presented by Deng et al. [42] (Scheme 3). Although traditional Cinchona alkaloids were efficient catalysts for conjugate addition of carbon nucleophiles to nitroalkenes and sulfones, replacement of the C(9)-OH with an ester group (Q-7b) showed great improvement in stereoselectivity. The reaction is applicable to a variety of cyclic and acyclic enones (16,18). [Pg.151]

In the initial screening of various Cinchona alkaloids, the addition of diethyl phosphate 41 to IV-Boc imine 40 in toluene revealed the key role of the free hydroxyl group of the catalyst. Replacing the C(9)-OH group with esters or amides only results in poor selectivity. Quinine (Q) was identified as an ideal catalyst. A mechanistic proposal for the role of quinine is presented. Hydrogen-bonding by the free C(9)-hydroxyl group and quinuclidine base activation of the phosphonate into a nucleophilic phosphite species are key to the reactivity of this transformation (Scheme 9). [Pg.154]

The use of compounds with activated methylene protons (doubly activated) enables the use of a mild base during the Neber reaction to 277-azirines. Using ketoxime 4-toluenesulfonates of 3-oxocarboxylic esters 539 as starting materials and a catalytic quantity of chiral tertiary base for the reaction, moderate to high enantioselectivity (44-82% ee) was achieved (equation 240). This asymmetric conversion was observed for the three pairs of Cinchona alkaloids (Cinchonine/Cinchonidine, Quinine/Quinidine and Dihydro-quinine/Dihydroquinidine). When the pseudoenantiomers of the alkaloid bases were used, opposite enantioselectivity was observed in the reaction. This fact shows that the absolute configuration of the predominant azirine can be controlled by base selection. [Pg.478]

Another useful method is the modification of Pt black by cinchona alkaloids, initially developed by Orito, which permits the asymmetric hydrogenation of a-keto esters in up to 90% optical yield (Scheme 17) (43). The reaction with Pt-Al203 modified by cinchonidine can be carried out on 10-200-kg scale in greater than 98% chemical yield and in... [Pg.188]

To obtain these products selenium dioxide is allowed to react with the hydrogenated cinchona alkaloids or their derivatives in the presence of concentrated sulphuric acid and the products obtained are diluted with water and boiled. Selenohydroquinine is prepared from hydro-quinine sulphate or hydroquinine sulphuric ester, and forms yellow needles which remain unchanged below 235° C. selenoethylhydro-cupreine forms yellow needles, 5l.pt. 233° to 23-1° C., and selenohydro-cupreine separates as small, orange-coloured needles, w hich are unmelted below 235° C. The products are of use therapeutically. [Pg.162]

Most of the studies of Pt catalysts with cinchona alkaloids have focused on the hydrogenation of a-keto esters, especially ethyl pyruvate, as shown above, However, enantioselective hydrogenation of ketopantolactone and l-ethyl-4,4-dimethylpyrrolidine-2,3,5-trione is attainable with a Pt catalyst modified by cinchonidine, giving the corresponding R alcohols with 92% ee and 91% ee, respectively (Scheme 1.40) [213]. These reactions can be performed with an S/C of up to 237,000 [213a],... [Pg.40]

Esters 16b,c are used in reactions catalyzed by cinchona alkaloid-based phase-transfer catalysts, since the size of the ester is important for efficient asymmetric induction in these reactions [35], However, the syntheses of esters 16b,c adds considerable cost to any attempt to exploit this chemistry on a commercial basis. Fortunately, it was possible to develop reaction conditions which allowed the readily available and inexpensive substrate 16a to be alkylated with high enantios-electivity using catalyst 33 and sodium hydroxide, as shown in Scheme 8.18 [36]. The key feature of this modified process is the introduction of a re-esterification step following alkylation of the enolate of compound 16a. It appears that under... [Pg.175]

A highly enantioselective direct Mannich reaction of simple /V-Boc-aryl and alkyl- imines with malonates and /1-kclo esters has been reported.27 Catalysed by cinchona alkaloids with a pendant urea moiety, bifunctional catalysis is achieved, with the urea providing cooperative hydrogen bonding, and the alkaloid giving chiral induction. With yields and ees up to 99% in dichloromethane (DCM) solvent, the mild air- and moisture-tolerant method opens up a convenient route to jV-Boc-amino acids. [Pg.5]

S,y-Unsaturated a-keto esters such as tnms -MeCH=CHCOCC>2Et undergo enan-tioselective reaction with nitromethane, using new catalytic auxiliaries based on cinchona alkaloids.145 Carried out at -20 °C in DCM, the organocatalysts give high conversion, predominantly reaction at ketone only (typically <5% of product involves simultaneous addition to the alkene), and up to 97% ee. [Pg.19]

Ketones have been enantioselectively cyanocarbonated to give tetrasubstituted carbon stereocentres (84), using cinchona alkaloid catalysts and cyano esters, with ees up to 97%.254 A fall-off in ee at high conversions has been explained by a mechanism involving competing asymmetric processes, and significant retro-cyanation. [Pg.31]

Some bifunctional 6 -OH Cinchona alkaloid derivatives catalyse the enantioselective hydroxyalkylation of indoles by aldehydes and a-keto esters.44 Indole, for example, can react with ethyl glyoxylate to give mainly (39) in 93% ee. The enan- tioselective reaction of indoles with iV-sulfonyl aldimines [e.g. (40)] is catalysed by the Cu(OTf)2 complex of (S)-benzylbisoxazoline (37b) to form 3-indolylmethanamine derivatives, in up to 96% ee [e.g. (41a)] 45 Some 9-thiourea Cinchona alkaloids have been found to catalyse the formation of 3-indolylmethanamines [e.g. (41b)] from indoles and /V-PhS02-phenyli mines in 90% ee.46 Aryl- and alkyl-imines also give enantioselective reactions. [Pg.194]

The conjugate addition of cyclic or acyclic a-substituted ft-keto esters to cy,/3-unsaturated ketones can be achieved with good diastereo- and enantio-selectivity (<98% ee) by using derivatives of Cinchona alkaloids, such as (104), a chiral organo-catalysts.155... [Pg.347]

The development of dimeric cinchona alkaloids as very efficient and practical catalysts for asymmetric alkylation of the N-protected glycine ester 18 was reported... [Pg.18]


See other pages where Cinchona alkaloid esters is mentioned: [Pg.30]    [Pg.379]    [Pg.30]    [Pg.379]    [Pg.447]    [Pg.1052]    [Pg.108]    [Pg.127]    [Pg.18]    [Pg.14]    [Pg.157]    [Pg.256]    [Pg.279]    [Pg.567]    [Pg.567]    [Pg.175]    [Pg.173]    [Pg.77]    [Pg.359]    [Pg.892]    [Pg.71]    [Pg.147]   


SEARCH



Cinchona

Ester alkaloid

© 2024 chempedia.info