Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic separations, basics

The optimization of chromatographic separations can generally be seen as a compromise between speed, i.e., to produce the largest possible amount of data or substance per unit time, and resolution, i.e., to produce the highest possible quality of data or purity of substance. Obviously the goal for optimization differs according to the purpose of the separation and also between scale of operation. Therefore, different parameters are critical for different situations. Still, some basic rules for optimization may be applied. [Pg.67]

An important property of these siloxane phases is their stability under the conditions used in most chromatographic separations the siloxane bonds are attacked only in very acidic (pH < 2) or basic (pH > 9) conditions. A large number of commercial bonded-phase packings are available in particle sizes suitable for HPLC.48... [Pg.219]

The sample preparation in LC analysis is as important as the chromatographic separation itself. The procedure will often require considerable skill copied with a basic understanding of chromatographic methodology. The analyst will need to have some familiarity with micro techniques including general micro-manipulation, microfiltration, centrifugation and derivatization. [Pg.195]

Coman et al. [82] used a new modeling of the chromatographic separation process of some polar (hydroxy benzo[a]pyrene derivatives) and nonpolar (benzo[a]pyrene, dibenz[a,/ ]anthracene, and chrysene) polycyclic aromatic compounds in the form of third-degree functions. For the selection of the optimum composition of the benzene-acetone-water mobile phase used in the separation of eight polycyclic aromatic compounds on RP-TLC layers, some computer programs in the GW-BASIC language were written. [Pg.93]

Chromatographic Development The basic concepts of chromatographic separations are described elsewhere in this handbook. Proteins differ from small solutes in that the large number of charged and/or hydrophobic residues on the protein surface provide multiple... [Pg.81]

The main characteristics of the ideal extraction method are given in Table 3.47, which at the same time are also criteria for comparison of sample preparation techniques. It is unlikely that a unique best method can be defined, which is analyte and matrix independent. Extraction is affected by polymer functionality, molecular weight and cross-linking. Selective extraction of some additives is basically not possible. Hence, the goal of an ideal extraction would be the complete extraction of all additives from the polymer for subsequent chromatographic separation. [Pg.134]

The reaction between cellulose and acrylamide was studied by quantitative, chromatographic separation of the substituted D-glucoses obtained on acid hydrolysis of the reaction product,320 followed by an analysis by Spurlin s method.249 Although, apparently, no check was made on the stability of the ethers to the conditions of hydrolysis, it might be expected that the ethers would isomerize only under basic conditions. The ratios of the relative equilibrium-constants for reaction at 0-2, 0-3, and 0-6 were 9 1 19, and these are attributable to the high, relative stability of the primary ether, together with the low reactivity of 0-3, also observed in rate-controlled reactions. [Pg.67]

This basically means that two instruments have been linked together. The first analyser can replace the traditional chromatographic separation step and is used to produce ions of chosen m/z values. Each of the selected ions is then fragmented by collision with a gas, and mass analysis of these product ions effected in the second analyser. The resulting mass spectrum is used for their identification. The potential combinations of the various magnetic sector and quadrupole instruments to form such coupled systems is considerable. Ion traps may also be operated in a tandem MS mode. [Pg.128]


See other pages where Chromatographic separations, basics is mentioned: [Pg.171]    [Pg.171]    [Pg.47]    [Pg.256]    [Pg.480]    [Pg.202]    [Pg.286]    [Pg.5]    [Pg.286]    [Pg.20]    [Pg.165]    [Pg.205]    [Pg.88]    [Pg.234]    [Pg.235]    [Pg.485]    [Pg.79]    [Pg.329]    [Pg.340]    [Pg.350]    [Pg.776]    [Pg.97]    [Pg.1028]    [Pg.60]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.331]    [Pg.333]    [Pg.335]    [Pg.337]    [Pg.339]    [Pg.341]   


SEARCH



Basicity separation

© 2024 chempedia.info