Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Receptors cholesterol

In order for lipoproteins to release their cholesterol and triglycerides, the cholesterol receptors on the target cells... [Pg.57]

Defects in the LDL receptor have been particularly well explored as a basis of the disease familial hypercholesterolemia (93,111). A number of defects that collectively impair LDL receptor trafficking, binding, or deUvery underHe this disease where LDL and semm cholesterol rise to levels that mediate early cardiovascular mortaUty. Studies of the population distribution of this defect can determine the source of the original mutation. Thus, in Quebec, about 60% of the individuals suffering from familial hypercholesterolemia have a particular 10-kdobase deletion mutation in the LDL gene (112). This may have arisen from an original founder of the French Canadian settiement in the seventeenth century. [Pg.283]

The primary transporter of cholesterol in the blood is low density Hpoprotein (LDL). Once transported intraceUularly, cholesterol homeostasis is controlled primarily by suppressing cholesterol synthesis through inhibition of P-hydroxy-P-methyl gluterate-coenzyme A (HMG—CoA) reductase, acyl CoA—acyl transferase (ACAT), and down-regulation of LDL receptors. An important dmg in the regulation of cholesterol metaboHsm is lovastatin, also known as mevinolin, MK-803, and Mevacor, which is an HMG—CoA reductase inhibitor (Table 5). [Pg.130]

When most lipids circulate in the body, they do so in the form of lipoprotein complexes. Simple, unesterified fatty acids are merely bound to serum albumin and other proteins in blood plasma, but phospholipids, triacylglycerols, cholesterol, and cholesterol esters are all transported in the form of lipoproteins. At various sites in the body, lipoproteins interact with specific receptors and enzymes that transfer or modify their lipid cargoes. It is now customary to classify lipoproteins according to their densities (Table 25.1). The densities are... [Pg.840]

Anion exchange resins are basic polymers with a high affinity for anions. Because different anions compete for binding to them, they can be used to sequester anions. Clinically used anion exchange resins such as cholestyramine are used to sequester bile acids in the intestine, thereby preventing their reabsorption. As a consequence, the absorption of exogenous cholesterol is decreased. The accompanying increase in low density lipoprotein (LDL)-receptors leads to the removal of LDL from the blood and, thereby, to a reduction of LDL cholesterol. This effect underlies the use of cholestyramine in the treatment of hyperlipidaemia. [Pg.90]

Disorders of lipoprotein metabolism involve perturbations which cause elevation of triglycerides and/or cholesterol, reduction of HDL-C, or alteration of properties of lipoproteins, such as their size or composition. These perturbations can be genetic (primary) or occur as a result of other diseases, conditions, or drugs (secondary). Some of the most important secondary disorders include hypothyroidism, diabetes mellitus, renal disease, and alcohol use. Hypothyroidism causes elevated LDL-C levels due primarily to downregulation of the LDL receptor. Insulin-resistance and type 2 diabetes mellitus result in impaired capacity to catabolize chylomicrons and VLDL, as well as excess hepatic triglyceride and VLDL production. Chronic kidney disease, including but not limited to end-stage... [Pg.697]

Jessup W, Gelissen IC, Gaus K, Kritharides L (2006) Roles of ATP binding cassette transporters Al and Gl, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 17(3) 247-57... [Pg.1160]

Figure 25-3. Metabolic fate of chylomicrons. (A, apolipoprotein A B-48, apolipoprotein B-48 , apolipoprotein C E, apolipoprotein E HDL, high-density lipoprotein TG, triacylgiycerol C, cholesterol and cholesteryl ester P, phospholipid HL, hepatic lipase LRP, LDL receptor-reiated protein.) Only the predominant lipids are shown. Figure 25-3. Metabolic fate of chylomicrons. (A, apolipoprotein A B-48, apolipoprotein B-48 , apolipoprotein C E, apolipoprotein E HDL, high-density lipoprotein TG, triacylgiycerol C, cholesterol and cholesteryl ester P, phospholipid HL, hepatic lipase LRP, LDL receptor-reiated protein.) Only the predominant lipids are shown.
Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women. Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women.
In tissues, cholesterol balance is regulated as follows (Figure 26-5) Cell cholesterol increase is due to uptake of cholesterol-containing Hpoproteins by receptors, eg, the LDL receptor or the scavenger receptor uptake of free cholesterol from cholesterol-rich hpoproteins to the cell... [Pg.220]

LDL (apo B-lOO, E) receptors occur on the cell surface in pits that are coated on the cytosolic side of the cell membrane with a protein called clathrin. The glycoprotein receptor spans the membrane, the B-lOO binding region being at the exposed amino terminal end. After binding, LDL is taken up intact by endocytosis. The apoprotein and cholesteryl ester are then hydrolyzed in the lysosomes, and cholesterol is translocated into the cell. The receptors are recycled to the cell surface. This influx of cholesterol inhibits in a coordinated manner HMG-CoA synthase, HMG-CoA reductase, and, therefore, cholesterol synthesis stimulates ACAT activ-... [Pg.223]


See other pages where Receptors cholesterol is mentioned: [Pg.5]    [Pg.31]    [Pg.155]    [Pg.72]    [Pg.171]    [Pg.293]    [Pg.1390]    [Pg.5]    [Pg.31]    [Pg.155]    [Pg.72]    [Pg.171]    [Pg.293]    [Pg.1390]    [Pg.269]    [Pg.131]    [Pg.12]    [Pg.55]    [Pg.467]    [Pg.842]    [Pg.845]    [Pg.169]    [Pg.178]    [Pg.211]    [Pg.257]    [Pg.302]    [Pg.596]    [Pg.694]    [Pg.694]    [Pg.696]    [Pg.697]    [Pg.698]    [Pg.698]    [Pg.699]    [Pg.705]    [Pg.1113]    [Pg.1156]    [Pg.1157]    [Pg.1159]    [Pg.1160]    [Pg.200]    [Pg.100]    [Pg.1]    [Pg.209]    [Pg.210]    [Pg.223]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Cholesterol receptor-mediated endocytosis

© 2024 chempedia.info