Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Choice compounds

A typical synthetic flavour is a very complex mixture of substances. The mixture used will have been chosen to give the desired properties in the system of choice. Compounding flavours is a mixture of chemistry and sensory skills. Flavourists spend years learning how to produce flavours. [Pg.101]

Knowing the functional activity of certain compounds means that their presence in foods is valued positively, and gives the consumer an additional parameter for product choice. Compounds whose presence are appreciated possibly for their esthetic function or as indicators of the state of ripeness and technological treatment of the foodstuff, as is the specific case of the chlorophylls, are given new scope. [Pg.338]

As it is now possible by choice of suitable conditions to prepare most compounds in this form, the colloid state should be considered as a physical state in which all substances can be made to exist. Many ma terials such as proteins, vegetable fibres, rubber, etc. are most stable or occur naturally in the colloidal slate. In the colloidal stale the properties of surface are all-important. [Pg.106]

The Web-based graphical user interface permits a choice from numerous criteria and the performance of rapid searches. This service, based on the chemistry information toolkit CACTVS, provides complex Boolean searches. Flexible substructure searches have also been implemented. Users can conduct 3D pharmacophore queries in up to 25 conformations pre-calculated for each compound. Numerous output formats as well as 2D and 3D visuaHzation options are supplied. It is possible to export search results in various forms and with choices for data contents in the exported files, for structure sets ranging in size from a single compound to the entire database. Additional information and down-loadable files (in various formats) can be obtained from this service. [Pg.263]

The large seareh engines (Tabic 5-6) generally provide a larger number of hits, hilt often from commercial if not even dubious sources. Yet if information on a new or rare compound is needed, they ean be recommended as a fust choice. The smaller subject engines provide more reliable data, but vary considerably in their results [47]. [Pg.272]

The previously mentioned data set with a total of 115 compounds has already been studied by other statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis, and the Partial Least Squares (PLS) method [39]. Thus, the choice and selection of descriptors has already been accomplished. [Pg.508]

The maximum dissimilarity algorithm works in an iterative manner at each step one compormd is selected from the database and added to the subset [Kennard and Stone 1969]. The compound selected is chosen to be the one most dissimilar to the current subset. There are many variants on this basic algorithm which differ in the way in which the first compound is chosen and how the dissimilarity is measured. Three possible choices for fhe initial compormd are (a) select it at random, (b) choose the molecule which is most representative (e.g. has the largest sum of similarities to the other molecules) or (c) choose the molecule which is most dissimilar (e.g. has the smallest sum of similarities to the other molecules). [Pg.699]

The choice of a solvent is of course determined primarily by its suitability for the actual recrystallisation of the given crude product. If two or more solvents appear to be almost equally suitable for the recrystallisation, the final choice should depend on the inflammability (and therefore risk in use) of the solvent, and also on its cost. It is assumed that a solvent which might have any chemical action on the compound has already been debarred. The chief solvents normally available are ... [Pg.14]

Experiment 4. Choice of Solvent and Complete Recrystallisation. Students should be supplied with distilled water and with the more common organic solvents, and also with the compounds mentioned below. Taking each compound in turn they should decide, by the methods described in (i) above, which of these six solvents is the best for recrystallisation. They should then recrystallise about 5 g. of at least two of the compounds, dry the product, and whenever possible take its melting-point. [Pg.21]

Choice of solvent for recrystallisation. Obtain small samples (about 0 5 g.) of the following compounds from the storeroom (i) salicylic acid, (Li) acetanilide, (iii) m-dinitrobenzene, (iv) naphthalene, and (v) p-toluene-sulphonamide. Use the following solvents distilled water, methylated spirit, rectified spirit, acetone, benzene and glacial acetic acid. [Pg.232]

The derivative selected in any particular instance should be one which clearly singles out one compound from among all the possibilities and thus enables an unequivocal choice to be made. The melting points of the derivatives to be compared should differ by at least 5-10°. Whenever possible, a derivative should be selected which has a neutralisation equivalent as well as a melting point (e.g., an aryloxyacetic acid derivative of a phenol. Section IV,114,4, or a hydrogen S nitrophthalate of an alcohol. Section 111,25,5). [Pg.1082]

The first step in developing a QSPR equation is to compile a list of compounds for which the experimentally determined property is known. Ideally, this list should be very large. Often, thousands of compounds are used in a QSPR study. If there are fewer compounds on the list than parameters to be fitted in the equation, then the curve fit will fail. If the same number exists for both, then an exact fit will be obtained. This exact fit is misleading because it fits the equation to all the anomalies in the data, it does not necessarily reflect all the correct trends necessary for a predictive method. In order to ensure that the method will be predictive, there should ideally be 10 times as many test compounds as fitted parameters. The choice of compounds is also important. For... [Pg.243]

Modeling the lighter main group inorganic compounds is similar to modeling organic compounds. Thus, the choice of method and basis set is nearly identical. The second-row compounds (i.e., sulfur) do have unfilled d orbitals, making it often necessary to use basis sets with d functions. [Pg.285]

Ten years ago we became interested in the possibility of using nitration as a process with which to study the reactivity of hetero-aromatic compounds towards electrophilic substitution. The choice of nitration was determined by the consideration that its mechanism was probably better imderstood than that of any other electrophilic substitution. Others also were pursuing the same objective, and a considerable amount of information has now been compiled. [Pg.251]

First, your Nitromethane may require purification, especially if it w/ as for "fuel" use. In this case, it needs to be vacuum distilled at a vacuum of better than 100mm Hg. At that pressure, it will come off at 47C. Distillation at atmospheric pressure is possible, but I do not recommend it due to the highly flammable nature of the compound and because it s flash point is 42C. It s your choice. [Pg.273]

Alkyllithium bases are generally less suitable for deprotofiation of compounds with strongly electron-withdrawing groups such as C=0, COOR and CsN. In these cases lithium dialkylamides, especially those with bulky groups (isopropyl, cyclohexyl), are the reagents of choice. They are very easily obtained from butyllithium and the dialkylamine in the desired solvent. [Pg.10]

A classical reaction leading to 1,4-difunctional compounds is the nucleophilic substitution of the bromine of cf-bromo carbonyl compounds (a -synthons) with enolate type anions (d -synthons). Regio- and stereoselectivities, which can be achieved by an appropiate choice of the enol component, are similar to those described in the previous section. Just one example of a highly functionalized product (W.L. Meyer, 1963) is given. [Pg.63]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

The most common stereoselective syntheses involve the formation and cleavage of cyclopentane and cyclohexane derivatives or their unsaturated analogues. The target molecule (aff-cts)-2-methyl-l,4-cyclohexanediol has all of its substituents on the same side of the ring. Such a compound can be obtained by catalytic hydrogenation of a planar cyclic precursor. Methyl-l,4-benzoquinone is an ideal choice (p-toluquinone M. Nakazaki, 1966). [Pg.209]

The following acid-catalyzed cyclizations leading to steroid hormone precursors exemplify some important facts an acetylenic bond is less nucleophilic than an olelinic bond acetylenic bonds tend to form cyclopentane rather than cyclohexane derivatives, if there is a choice in proton-catalyzed olefin cyclizations the thermodynamically most stable Irons connection of cyclohexane rings is obtained selectively electroneutral nucleophilic agents such as ethylene carbonate can be used to terminate the cationic cyclization process forming stable enol derivatives which can be hydrolyzed to carbonyl compounds without this nucleophile and with trifluoroacetic acid the corresponding enol ester may be obtained (M.B. Gravestock, 1978, A,B P.E. Peterson, 1969). [Pg.279]


See other pages where Choice compounds is mentioned: [Pg.2877]    [Pg.147]    [Pg.158]    [Pg.2877]    [Pg.61]    [Pg.433]    [Pg.329]    [Pg.2877]    [Pg.147]    [Pg.158]    [Pg.2877]    [Pg.61]    [Pg.433]    [Pg.329]    [Pg.305]    [Pg.928]    [Pg.1623]    [Pg.218]    [Pg.221]    [Pg.405]    [Pg.507]    [Pg.661]    [Pg.15]    [Pg.218]    [Pg.162]    [Pg.1075]    [Pg.82]    [Pg.46]    [Pg.45]    [Pg.318]    [Pg.2]    [Pg.50]    [Pg.199]    [Pg.209]    [Pg.211]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Choice of Rubber Compounds for the Ore and Mining Industries

Pharmacokinetics compound choice

© 2024 chempedia.info