Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroaluminate systems transition metals

Chloroaluminate(III) ionic liquid systems are perhaps the best established and have been most extensively studied in the development of low-melting organic ionic liquids with particular emphasis on electrochemical and electrodeposition applications, transition metal coordination chemistry, and in applications as liquid Lewis acid catalysts in organic synthesis. Variable and tunable acidity, from basic through neutral to acidic, allows for some very subtle changes in transition metal coordination chemistry. The melting points of [EMIM]C1/A1C13 mixtures can be as low as -90 °C, and the upper liquid limit almost 300 °C [4, 6]. [Pg.43]

The previous sections show that certain ionic liquids, namely the chloroalumi-nate(III) ionic liquids, are capable of acting both as catalyst and as solvent for the polymerization of certain olefins, although in a somewhat uncontrolled manner, and that other ionic liquids, namely the non-chloroaluminate(III) ionic liquids, are capable of acting as solvents for free radical polymerization processes. In attempts to carry out polymerization reactions in a more controlled manner, several studies have used dissolved transition metal catalysts in ambient-temperature ionic liquids and have investigated the compatibility of the catalyst towards a range of polymerization systems. [Pg.326]

The coordination of transition metal ions in acidic chloroaluminate melts has not been firmly established. However, in the case of AICb-EtMelmCI. the E0 values of simple redox systems that are electrochemically accessible in both acidic and basic melt, e.g., Hg(II)/Hg [51], Sb(III)/Sb [52], and Sn(II)/Sn [53] exhibit a large positive potential shift on going from basic melt, where metal ions are known to exist as discrete anionic chloride complexes, to acidic melt. Similar results were observed for Cu(I) in AlCh-NaCl [48]. This dramatic decrease in electrochemical stability isprima facie evidence that metal ions in acidic melt are probably only weakly solvated by anionic species such as AICI4 and AECI-. Additional evidence for this is derived from the results of EXAFS measurements of simple metal ions such Co(II), Mn(II), and Ni(II) in acidic AlCh-EtMelmCl, which indicate that each of these ions is coordinated by three bidentate AICI4 ions to give octahedrally-coordinated species such as [ M (AIC14) 2 ] [54]. Most transition metal chloride compounds are virtually... [Pg.284]

In many ways, chloroaluminate molten salts are ideal solvents for the electrodeposition of transition metal-aluminum alloys because they constitute a reservoir of reducible aluminum-containing species, they are excellent solvents for many transition metal ions, and they exhibit good intrinsic ionic conductivity. In fact, the first organic salt-based chloroaluminate melt, a mixture of aluminum chloride and 1-ethylpyridinium bromide (EtPyBr), was formulated as a solvent for electroplating aluminum [55, 56] and subsequently used as a bath to electroform aluminum waveguides [57], Since these early articles, numerous reports have been published that describe the electrodeposition of aluminum from this and related chloroaluminate systems for examples, see Liao et al. [58] and articles cited therein. [Pg.285]

A battery system closely related to Na-S is the Na-metal chloride cell. The cell design is similar to Na-S however, iu addition to the /3-alumina electrolyte, the cell also employs a sodium chloroaluminate, NaAlCL . molten sail electrolyte. Tlie positive electrode active material consists of a transition metal chloride such as iron(II) chloride, FeCL, or nickel chloride, NiCty, in lieu of molten sulfur. This technology is in a younger state of development than the Na-S. [Pg.183]

Despite the early use of phosphonium salt melts as reaction media [12, 18, 25], the use of standard ionic liquids of type 1 and 2 as solvents for homogeneous transition metal catalysts was described for the first time in the case of chloroaluminate melts for the Ni-catalyzed dimerization of propene [5] and for the titanium-catalyzed polymerization of ethylene [6]. These inherently Lewis-acidic systems were also used for Friedel-Crafts chemistry with no added catalyst in homogeneous [7] as well as heterogeneous fashion [8], but ionic liquids which exhibit an enhanced stability toward hydrolysis, i. e., most non-chloroaluminate systems, have been shown to be of advantage in handling and for many homogeneously catalyzed reactions [la]. The Friedel-Crafts alkylation is possible in the latter media if Sc(OTf)3 is added as the catalyst [9]. [Pg.640]

Ziegler-Natta polymerization is used extensively for the polymerization of simple olefins (e.g. ethene, propene and 1-butene) and is the focus of much academic attention, as even small improvements to a commercial process operated on this scale can be important. Ziegler-Natta catalyst systems, which in general are early transition metal compounds used in conjunction vyith alkylaluminum compounds, lend themselves to study in the chloroaluminate(iii) ionic liquids, especially those with an acidic composition. [Pg.627]


See other pages where Chloroaluminate systems transition metals is mentioned: [Pg.214]    [Pg.297]    [Pg.327]    [Pg.297]    [Pg.187]    [Pg.214]    [Pg.327]    [Pg.261]    [Pg.9]    [Pg.214]    [Pg.297]    [Pg.327]    [Pg.370]    [Pg.379]    [Pg.579]    [Pg.637]    [Pg.206]    [Pg.206]    [Pg.496]    [Pg.641]   
See also in sourсe #XX -- [ Pg.119 , Pg.123 ]




SEARCH



Chloroaluminate

Metal chloroaluminate

Transit system

Transition metal systems

© 2024 chempedia.info