Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorins, primary chains

Properties of the macromolecule concerning chlorine distribution, chain branching, presence of the double bond, primary oxy groups, and partially polymerized residues of initiating and emulsifying agents. [Pg.60]

The slow combustion of methylene chloride is a degenerately branched chain reaction it proceeds by a mechanism similar to that involved in the pyrolysis of the same compound which takes place at a slightly higher temperature [153]. The primary chains are the same and several of the chlorinated hydrocarbon minor products are identical. Oxygen is only involved in the conversion of the intermediate dichloroethylene to the final products hydrogen chloride and carbon monoxide. [Pg.492]

The ultraviolet lamps used in the photochlorination process serve to dissociate the chlorine into free radicals and start the radical-chain reaction. Other radical sources, such as 2,2 -a2obisisobutyronitrile, have been used (63,64). Primary by-products of the photochlorination process include 1,1,2-trichloroethane (15—20%), tetrachloroethanes, and pentachloroethane. Selectivity to 1,1,1-trichloroethane is higher in vapor-phase chlorination. Various additives, most containing iodine or an aromatic ring in the molecule, have been used to increase the selectivity of the reaction to... [Pg.10]

Nearly all of the benzyl chloride [100-44-7], henzal chloride [98-87-3], and hen zotrichl oride /P< -(97-i manufactured is converted to other chemical intermediates or products by reactions involving the chlorine substituents of the side chain. Each of the compounds has a single primary use that consumes a large portion of the compound produced. Benzyl chloride is utilized in the manufacture of benzyl butyl phthalate, a vinyl resin plasticizer benzal chloride is hydrolyzed to benzaldehyde hen zotrichl oride is converted to benzoyl chloride. Benzyl chloride is also hydrolyzed to benzyl alcohol, which is used in the photographic industry, in perfumes (as esters), and in peptide synthesis by conversion to benzyl chloroformate [501-53-1] (see Benzyl ALCOHOL AND p-PHENETHYL ALCOHOL CARBONIC AND CARBONOCm ORIDIC ESTERS). [Pg.58]

Important differences are seen when the reactions of the other halogens are compared to bromination. In the case of chlorination, although the same chain mechanism is operative as for bromination, there is a key difference in the greatly diminished selectivity of the chlorination. For example, the pri sec selectivity in 2,3-dimethylbutane for chlorination is 1 3.6 in typical solvents. Because of the greater reactivity of the chlorine atom, abstractions of primary, secondary, and tertiary hydrogens are all exothermic. As a result of this exothermicity, the stability of the product radical has less influence on the activation energy. In terms of Hammond s postulate (Section 4.4.2), the transition state would be expected to be more reactant-like. As an example of the low selectivity, ethylbenzene is chlorinated at both the methyl and the methylene positions, despite the much greater stability of the benzyl radical ... [Pg.703]

This reaction is reported to proceed at a rapid rate, with over 25% conversion in less than 0.001 s [3]. It can also proceed at very low temperatures, as in the middle of winter. Most primary substituted urea linkages, referred to as urea bonds, are more thermally stable than urethane bonds, by 20-30°C, but not in all cases. Polyamines based on aromatic amines are normally somewhat slower, especially if there are additional electron withdrawing moieties on the aromatic ring, such as chlorine or ester linkages [4]. Use of aliphatic isocyanates, such as methylene bis-4,4 -(cyclohexylisocyanate) (HnMDI), in place of MDI, has been shown to slow the gelation rate to about 60 s, with an amine chain extender present. Sterically hindered secondary amine-terminated polyols, in conjunction with certain aliphatic isocyanates, are reported to have slower gelation times, in some cases as long as 24 h [4]. [Pg.763]

Bromine reacts with alkanes by a free-radical chain mechanism analogous to that of chlorine. There is an important difference between chlorination and brornination, however. Brornination is highly selective for substitution of tertiary hydrogens. The spread in reactivity fflnong primary, secondary, and tertiary hydrogens is greater than 10. ... [Pg.177]

Alkyl Side Chains of Aromatic Rings. The preferential position of attack on a side chain is usually the one a to the ring. Both for active radicals such as chlorine and phenyl and for more selective ones such as bromine such attack is faster than that at a primary carbon, but for the active radicals benzylic attack is slower than for tertiary positions, while for the selective ones it is faster. Two or three aryl groups on a carbon activate its hydrogens even more, as would be expected from the resonance involved. These statements can be illustrated by the following abstraction ratios ... [Pg.902]

The primary radical yields are often 3. A much higher value (>10) indicates chain reaction. In fact, the chain reaction mechanism for the formation of HC1 from a gaseous mixture of hydrogen and chlorine exposed to radium irradiation is one of the earliest example of this kind, although the detailed chemistry was later shown to involve dissociated atoms rather than electrons and ions, as was originally proposed (see Bansal and Freeman, 1971). [Pg.362]

For tertiary, secondary, and primary chlorides the reduction becomes increasingly difficult due to shorter chain lengths. On the other hand, the replacement of a chlorine atom by hydrogen in polychlorinated substrates is much easier. Table 4.2 shows the rate constants for the reaction of (TMS)3Si radical with some chlorides [32]. The comparison with the analogous data of Table 4.1 shows that for benzyl and tertiary alkyl substituents the chlorine atom abstraction is 2-3 orders of magnitude slower than for the analogous bromides. [Pg.57]

There are many electrophiles which not only terminate living polymer chains but also produce end-group substitution. For example, macromolecules with hydroxyl, carboxyl, thiol, or chlorine termini can be prepared by reacting living polymers with such compounds as epoxides, aldehydes, ketones, carbon dioxide, anhydrides, cyclic sulfides, disulfides, or chlorine (15-23). However, primary and secondary amino-substituted polymers are not available by terminations with 1° or 2° amines because living polymers react with such functionalities (1.). Yet, tert-amines can be introduced to chain ends by use of -N-N-di-methylamino-benzaldehyde as the terminating agent (24). [Pg.429]

Plasticizer compatibility is a second limiting property. This results from the fact the chloroparaffins containing less than approximately 40% chlorine have poor compatibility when used in conjunction with primary plasticizers 11). This is shown qualitatively in Table IV for a chlorinated single component w-paraffin at a level of 20% replacement of dioctyl phthalate. It is evident that the exudation first reaches its lowest value in the range 40 to 45% chlorine. This level of chlorine appears to be a minimum regardless of the length of the carbon chain of the paraffin. [Pg.124]


See other pages where Chlorins, primary chains is mentioned: [Pg.89]    [Pg.621]    [Pg.640]    [Pg.239]    [Pg.118]    [Pg.218]    [Pg.509]    [Pg.45]    [Pg.543]    [Pg.257]    [Pg.420]    [Pg.185]    [Pg.10]    [Pg.907]    [Pg.943]    [Pg.467]    [Pg.33]    [Pg.282]    [Pg.1287]    [Pg.48]    [Pg.188]    [Pg.44]    [Pg.439]    [Pg.973]    [Pg.1265]    [Pg.1533]    [Pg.467]    [Pg.754]    [Pg.80]    [Pg.1]    [Pg.50]    [Pg.1053]    [Pg.1287]    [Pg.566]    [Pg.690]    [Pg.110]    [Pg.167]   
See also in sourсe #XX -- [ Pg.86 , Pg.87 ]




SEARCH



Primary chains

© 2024 chempedia.info