Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine excited, reaction

Kandel S A and Zare R N 1998 Reaction dynamics of atomic chlorine with methane importance of methane bending and tortional excitation in controlling reactivity J. Chem. Phys. 109 9719-27... [Pg.2088]

The reaction path shows how Xe and Clj react with electrons initially to form Xe cations. These react with Clj or Cl- to give electronically excited-state molecules XeCl, which emit light to return to ground-state XeCI. The latter are not stable and immediately dissociate to give xenon and chlorine. In such gas lasers, translational motion of the excited-state XeCl gives rise to some Doppler shifting in the laser light, so the emission line is not as sharp as it is in solid-state lasers. [Pg.130]

A number of chemiluminescent reactions have been studied by producing key reactants through pulsed electric discharge, by microwave dissociation, or by observing the reactions of atoms and free radicals produced in the inner cone of a laminar flame as they diffuse into the flame s cool outer cone (182,183). These are either combination reactions or atom-transfer reactions involving transfer of chlorine (184) or oxygen atoms (181,185—187), the latter giving excited oxides. [Pg.270]

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
The photolysis of chlorinated aromatic compounds occurs by several processes which follow predictable routes 13). They frequently undergo photochemical loss of chlorine by dissociation of the excited molecule to free radicals or, alternatively, through a nucleophilic displacement reaction with a solvent or substrate molecule. Either mechanism is plausible, and the operation of one or the other may be influenced by the reaction medium and the presence of other reagents. [Pg.45]

The mechanism(s) by which these photocatalyzed oxidations are initiated remain uncertain. Early proposals have included involvement of either the photo-produced holes (h+) arising directly from semiconductor photo-excitation, or the (presumed) derivative hydroxyl radical (OH) which was argued to arise from the hole oxidation of adsorbed hydroxyls (h+ + OH-—> OH ). Recent subambient studies [4] with physisorbed chloromethane and oxygen suggest the dioxygen anion (02 ) as a key active species, and the photocatalytic high efficiency chain destruction of TCE is argued to be initiated by chlorine radicals (Cl) [5]. The chlorine-enhanced photocatalytic destruction of air contaminants has been proposed [1, 2, 6] to depend upon reactions initiated by chlorine radicals. [Pg.435]

Chlorination of aromatic compounds under irradiation has been studied extensively (Wagner, 1969). With benzene, the product is a mixture of stereoisomeric hexachlorocyclohexanes with yields 104pmol.J 1. This certainly points to chain reaction with the initiation either from a dissociation, Cl2 2C1, or from the participation of the first excited singlet state of benzene 0B2u) giving... [Pg.369]

Here, X and Y are halogens and R represents the remainder of the carbon skeleton. The reaction proceeds particularly well for the halogens chlorine and bromine, but much less so for fluorine, as the C—F bond is much stronger than either C—Cl or C—Br. However, the excited sodium halide, NaX1, is not the emitting species. Another collision between this molecule and another vapor-phase sodium atom is needed ... [Pg.373]

Conversely, a quantum yield

greater than unity cannot be achieved during a straightforward photochemical reaction, since the second law of photochemistry clearly says that one photon is consumed per species excited. In fact, values of > 1 indicate that a secondary reaction(s) has occurred. A value of > 2 implies that the product of the photochemical reaction is consumed by another molecule of reactant, e.g. during a chain reaction, with one photon generating a simple molecule of, say, excited chlorine, which cleaves in the excited state to generate two radicals. Each radical then reacts in propagation reactions until the reaction mixture is exhausted of reactant. [Pg.452]

Reference to Table 8.1 shows that in the absence of chlorine-containing species the visible emission is dominated by BaOH, in spite of the fact that the equilibrium concentration of BaOH is many orders of magnitude smaller than that of BaO. The reason for this is that the hydroxide is formed directly in an excited state in a process known as chemiluminescence, as shown by reaction (8.5) ... [Pg.112]

Photolysis of the dimer, reaction (44), proceeds primarily via generation of Cl + ClOO (Cox and Hayrnan, 1988 Molina et al., 1990). For example, Molina et al. (1990) reported the quantum yield for this channel at 308 nm to be unity, with an uncertainty of 30%. Okumura and co-workers (Moore et al., 1999) and Schindler and co-workers (Schmidt et al., 1998) have reported that the quantum yield is less than 1.0. For example, Schmidt et al. (1998) used resonance-enhanced multiphoton ionization (REMPI) with time-of-flight (TOF) mass spectrometry to follow the production of oxygen and chlorine atoms as well as CIO in vibrational levels up to v" = 5 in the photolysis of the dimer. At a photolysis wavelength of 250 nm, the quantum yield for chlorine atom production was measured to be 0.65 + 0.15, but CIO was not observed. Assuming that all of the excited dimer dissociates, this suggests that the production of CIO in vibrational... [Pg.678]

In this reaction the excited anthracene molecule is supposed to abstract a chlorine atom from CC14, a process facilitated by the resonance energy of. CCIS radical. As the energy of 1A is 322 kJ (77 kcal) mol-1 and the bond energy of C—Cl in CC14 is 293 kJ (70 kcal) mol-1 there is enough energy for the process. [Pg.332]

Perhaps the best-known photoaddition reaction of benzene is that with chlorine to produce hexachlorocyclohexane (3.37). of which one steroisomer is widely used as an active component in insecticides. However, this reaction does not involve the excited state of benzene chlorine absorbs light and cleaves homolytically to give chlorine atoms, which then attack the ground state of benzene, leading to overall addition. [Pg.90]


See other pages where Chlorine excited, reaction is mentioned: [Pg.264]    [Pg.121]    [Pg.145]    [Pg.121]    [Pg.949]    [Pg.951]    [Pg.321]    [Pg.714]    [Pg.133]    [Pg.137]    [Pg.129]    [Pg.848]    [Pg.767]    [Pg.46]    [Pg.210]    [Pg.269]    [Pg.4]    [Pg.5]    [Pg.163]    [Pg.365]    [Pg.170]    [Pg.122]    [Pg.124]    [Pg.282]    [Pg.66]    [Pg.162]    [Pg.39]    [Pg.115]    [Pg.3]    [Pg.11]    [Pg.27]    [Pg.207]    [Pg.334]    [Pg.167]    [Pg.253]    [Pg.254]    [Pg.254]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Chlorination reactions

Chlorine reactions

Chlorins reactions

© 2024 chempedia.info