Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine atoms, vinylic

It is evident that the values of the transfer constants are dependent on the nature both of the attacking radicals and of the transfer agent itself, and that similar effects should be expected during the synthesis of graft copolymers by chain transfer methods. For example, with respect to toluene the chain transfer constant is a little greater for methyl methacrylate radicals than for styrene radicals on the contrary, with respect to halogenated solvents (CC14) the polystyrene radical is much more effective in the removal of a chlorine atom. Vinyl acetate chains are far more effective than either of the other two polymer radicals. [Pg.179]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Substitution at the Carbon—Chlorine Bond. Vinyl chloride is generally considered inert to nucleophilic replacement compared to other alkyl halides. However, the chlorine atom can be exchanged under nucleophilic conditions in the presence of palladium [7440-05-3] Pd, and certain other metal chlorides and salts. Vinyl alcoholates, esters, and ethers can be readily produced from these reactions. [Pg.414]

Oxidation. The chlorine atom [22537-15-17-initiated, gas-phase oxidation of vinyl chloride yields 74% formyl chloride [2565-30-2] and 25% CO at high oxygen [7782-44-7], O2, to CI2 ratios it is unique among the chloro olefin oxidations because CO is a major initial product and because the reaction proceeds by a nonchain path at high O2/CI2 ratios. The rate of the gas-phase reaction of chlorine atoms with vinyl chloride has been measured (39). [Pg.414]

Molecular Structure and Monomer Addition Orientation. The addition of vinyl monomer to a growing PVC chain can be considered to add in a head-to-tail fashion, resulting in a chlorine atom on every other carbon atom, ie,... [Pg.500]

Chloroformates are versatile, synthetic intermediates, based on the affinity of the chlorine atoms for active hydrogen atoms. Chloroformates should be considered as intermediates for syntheses of pesticides, perfumes, dmgs, polymers, dyes, and other chemicals. Some of these products, eg, carbonates, are used as solvents, plastici2ers, or as intermediates for further synthesis. A significant use of chloroformates is for conversion to peroxydicarbonates, which serve as free-radical initiators for the polymeri2ation of vinyl chloride, ethylene, and other unsaturated monomers. The most widely used percarbonate initiators are diisopropyl peroxydicarbonate (IPP), di-2-ethyIhexylperoxydicarbonate (2-EHP), and di-j -butylperoxydicarbonate (SBP). The following Hst includes most of the commercially used percarbonates. [Pg.41]

At least two catalytic processes have been used to purify halogenated streams. Both utilize fluidized beds of probably noimoble metal catalyst particles. One has been estimated to oxidize >9000 t/yr of chlorinated wastes from a vinyl chloride monomer plant (45). Several companies have commercialized catalysts which are reported to resist deactivation from a wider range of halogens. These newer catalysts may allow the required operating temperatures to be reduced, and stiU convert over 95% of the halocarbon, such as trichlorethylene, from an exhaust stream. Conversions of C-1 chlorocarbons utilizing an Englehardt HDC catalyst are shown in Figure 8. For this system, as the number of chlorine atoms increases, the temperatures required for destmction decreases. [Pg.512]

The close structural similarities between polychloroprene and the natural rubber molecule will be noted. However, whilst the methyl group activates the double bond in the polyisoprene molecule the chlorine atom has the opposite effect in polychloroprene. Thus the polymer is less liable to oxygen and ozone attack. At the same time the a-methylene groups are also deactivated so that accelerated sulphur vulcanisation is not a feasible proposition and alternative curing systems, often involving the pendant vinyl groups arising from 1,2-polymerisation modes, are necessary. [Pg.295]

Although poly(vinyl fluoride) resembles PVC in its low water absorption, resistance to hydrolysis, insolubility in common solvents at room temperature and a tendency to split off hydrogen halides at elevated temperatures, it has a much greater tendency to crystallise. This is because the fluorine atom (c.f. the chlorine atom) is sufficiently small to allow molecules to pack in the same way as polythene. [Pg.376]

Haloacetyl groups have also a synthetic potential. Thus, pesticidal (alkylthio)-vinyl esters of phosphorus acid derivatives have been prepared by the introduction and subsequent displacement of two chlorine atoms in the acetyl moiety attached to the furazan ring (Scheme 69) [73GEP(0)2144393]. [Pg.101]

In distinction to other esters of acrylic acids containing double bonds in the alcohol radical and, therefore exhibiting a tendency to cyclopolymerization43 and formation of crosslinked polymers, 10 reacts with AN in DMF solution41 or in benzene/DMF42 only with the vinyl group of the acid part due to deactivation of the double bond in the 3-chloro-2-butenyl group by the chlorine atom. The copolymer of structure 11 is formed. [Pg.111]

There are three cases The original p orbital may have contained two, one, or no electrons. Since the original double bond contributes two electrons, the total number of electrons accommodated by the new orbitals is four, three, or two. A typical example of the first situation is vinyl chloride, CH2—CH—CI. Although the p orbital of the chlorine atom is filled, it still overlaps with the double bond. The four electrons occupy the two molecular orbitals of lowest energies. This is our first example of resonance involving overlap between unfilled orbitals and a filled orbital. Canonical forms for vinyl chloride are... [Pg.38]

Vinyldialkylsilanes and vinyltrimethylsilane having no chlorine atoms do not undergo alkylation with benzene derivatives in the presenee of aluminum chloride but vinylchlorosilanes react with benzene to give the alkylation products. The reaetivities of vinylchlorosilanes decrease in the following order vinyl(methyl)di-chlorosilane > vinyltrichlorosilane > vinyl(dimethyl)chlorosilane. [Pg.159]

Upon treatment with nickeltetracarbonyl, dimethyl 3-vinyl-l,2-dichlorocy-clobutane-l,2-dicarboxylate 169 is rearranged, to dimethyl 1,4-cyclohexadiene-1,2-dicarboxylate 171 with concomitant loss of the chlorine atoms [87], Reduction to dimethyl 3-vinylcyclobutene-l,2-dicarboxylate 170 is involved in the initial step. (Scheme 64)... [Pg.134]

Coupling of vinyl dichlorides.1 This catalyst effects selective coupling of Grig-nard reagents or organozinc chlorides with only one of the chlorine atoms of 1,1-dichloro-l-alkenes (2) to give (Z)-vinyl chlorides (3). The selective coupling involves the chlorine that is trans to the R substituent, probably because of a steric... [Pg.124]

Scheme 160 Cathodic removal of a vinylic chlorine atom. Scheme 160 Cathodic removal of a vinylic chlorine atom.
Pure PVC is the linear homopolymer of vinyl chloride, as we can see in Figure 4.32. The industrial polymers are amorphous with a backbone identical to those of polyethylene, polypropylene and polybutene but the pendant chlorine atoms result in a polar polymer. The theoretical chlorine content is roughly 57%. [Pg.309]

This stereochemical outcome of the Fritsch-Buttenberg-Wiechell rearrangement is well compatible with the crystal structure of the carbenoid 3 (Figure 1, Scheme 4). The aryl moiety trans to the vinylic chlorine atom is bent towards Cl (C1-C2-C9 116.5°). Thus, migration of the fraw -aryl group with simultaneous liberation of lithium chloride becomes evident. The free vinylidene carbene can be ruled out as the intermediate. [Pg.866]

A chlorinated poly(vinyl chloride) any methylene units are necessarily separated hy an odd number of carbon atoms ... [Pg.340]

In contrast to this direct chlorination there is the oxychlorination of ethylene using hydrogen chloride and oxygen, the other major method now used. Since the chlorine supply is sometimes short and it is difficult to balance the caustic soda and chlorine demand (both are made by the electrolysis of brine), hydrogen chloride provides a cheap alternate source for the chlorine atom. Most of the ethylene dichloride manufactured is converted into vinyl chloride by eliminating a mole of HCl, which can then be recycled and used to make more EDC by oxychlorination. EDC and vinyl chloride plants usually are physically linked. Most plants are 50 50 direct chlorinationroxychlorination to balance the output of HCl. [Pg.146]

The very high value of Cm for vinyl chloride is attributed to a reaction sequence involving the propagating center XVIII formed by head-to-head addition [Hjertberg and Sorvik, 1983 Llauro-Darricades et al., 1989 Starnes, 1985 Starnes et al., 1983 Tornell, 1988]. Intramolecular migration of a chlorine atom (Eq. 3-114) yields the secondary radical XIX that subsequently transfers the chlorine atom to monomer (Eq. 3-115) to yield poly(vinyl chloride)... [Pg.243]

Fused silica capillary tubes were variously coated for capillary electrophoresis. The chemical process involving a Grignard reaction is shown in equation 30. The silanol groups on the silica surface are treated with alkali, dried, convert to chlorosUanes with thionyl chloride and vinylmagnesium bromide replaces the chlorine atoms with vinyl... [Pg.301]

The 6,7-dihydro-5/f -1,4-dioxepin (266) has been prepared (54CR(38)982). and more recently it has been shown that the 2,3-dihydro-5jF/-l,4-dioxepins (263) and (265) can be produced from 1,4-dioxine-halocarbene adducts (264), either by heating under reflux in xylene or by treatment with bases. The allylic chlorine atom in (263) is readily substituted by alkoxide or cyanide ions (77ZC331, 76UKZ968). Saturated rings of type (267) have been prepared by the treatment of cyclic acetals of ethane-1,2-diol with vinyl ethers in the presence of boron trifluoride, and l,4-dioxepan-5-one (268) has been prepared by the reaction of bromoform and silver nitrate with aqueous dioxane (60AG415). [Pg.621]

Anti-Markovnikov hydration of a vinyl chloride via oxymertcuration with mercuric trifluoroacetate in methanol was surprising [128]. However, it might be speculated that solvent modified Hg(II) species show a higher affinity for the chlorine atom than the rc-bond. The resultingchloronium ion is susceptible to attack by methanol in a manner analogous to Michael addition. Ejection of ClHgY is expected to be followed by a 1,2-hydride shift. [Pg.114]


See other pages where Chlorine atoms, vinylic is mentioned: [Pg.545]    [Pg.419]    [Pg.538]    [Pg.458]    [Pg.291]    [Pg.321]    [Pg.321]    [Pg.322]    [Pg.10]    [Pg.123]    [Pg.1538]    [Pg.87]    [Pg.91]    [Pg.93]    [Pg.100]    [Pg.733]    [Pg.12]    [Pg.142]    [Pg.68]    [Pg.46]    [Pg.372]    [Pg.220]    [Pg.671]    [Pg.165]    [Pg.32]   
See also in sourсe #XX -- [ Pg.557 ]




SEARCH



Atomic chlorine

© 2024 chempedia.info