Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality additives

Chips, semiconductor Chiral additives Chiral-AGP Chiral auxiliaries Chiral crown ethers Chiral hydrogenation Chirality... [Pg.192]

Chiral additives, however, do pose some unique problems. Many chiral agents are expensive or are not commercially available, and therefore, must be synthesized. The presence of the chiral additive in the bulk Hquid phase may also interfere with detection or recovery of the analytes. Finally, the presence of enantiomeric impurity in the chiral additive may add analytical complications (10). [Pg.60]

Thin-Layer Chromatography. Chiral stationary phases have been used less extensively in tic as in high performance Hquid chromatography (hplc). This may, in large part, be due to lack of avakabiHty. The cost of many chiral selectors, as well as the accessibiHty and success of chiral additives, may have inhibited widespread commerciali2ation. Usually, nondestmctive visuali2ation of the sample spots in tic is accompHshed using iodine vapor, uv or fluorescence. However, the presence of the chiral selector in the stationary phase can mask the analyte and interfere with detection (43). [Pg.62]

Catechin and epicatechin are two flavanols of the catechin family. They are enantiomers. The capillary zone electrophoresis (CE) methods with UV-detection were developed for quantitative determination of this flavanols in green tea extracts. For this purpose following conditions were varied mnning buffers, pH and concentration of chiral additive (P-cyclodextrin was chosen as a chiral selector). Borate buffers improve selectivity of separation because borate can make complexes with ortho-dihydroxy groups on the flavanoid nucleus. [Pg.114]

Liquid-liquid extraction is a basic process already applied as a large-scale method. Usually, it does not require highly sophisticated devices, being very attractive for the preparative-scale separation of enantiomers. In this case, a chiral selector must be added to one of the liquid phases. This principle is common to some of the separation techniques described previously, such as CCC, CPC or supported-liquid membranes. In all of these, partition of the enantiomers of a mixture takes place thanks to their different affinity for the chiral additive in a given system of solvents. [Pg.15]

Enantioresolution in capillary electrophoresis (CE) is typically achieved with the help of chiral additives dissolved in the background electrolyte. A number of low as well as high molecular weight compounds such as proteins, antibiotics, crown ethers, and cyclodextrins have already been tested and optimized. Since the mechanism of retention and resolution remains ambiguous, the selection of an additive best suited for the specific separation relies on the one-at-a-time testing of each individual compound, a tedious process at best. Obviously, the use of a mixed library of chiral additives combined with an efficient deconvolution strategy has the potential to accelerate this selection. [Pg.62]

In addition to the development of the powerful chiral additive, this study also demonstrated that the often tedious deconvolution process can be accelerated using HPLC separation. As a result, only 15 libraries had to be synthesized instead of 64 libraries that would be required for the full-scale deconvolution. A somewhat similar approach also involving HPLC fractionations has recently been demonstrated by Griffey for the deconvolution of libraries screened for biological activity [76]. Although demonstrated only for CE, the cyclic hexapeptides might also be useful selectors for the preparation of chiral stationary phases for HPLC. However, this would require the development of non-trivial additional chemistry to appropriately link the peptide to a porous solid support. [Pg.66]

For the separation of racemic mixtures, two basic types of membrane processes can be distinguished a direct separation using an enantioselective membrane, or separation in which a nonselective membrane assists an enantioselective process [5]. The most direct method is to apply enantioselective membranes, thus allowing selective transport of one of the enantiomers of a racemic mixture. These membranes can either be a dense polymer or a liquid. In the latter case, the membrane liquid can be chiral, or may contain a chiral additive (carrier). Nonselective membranes can also... [Pg.126]

Chiral additives have been shown to be very effective for chiral separations by capillary electrophoresis (CE) [4, 5]. Indeed, it may be argued that there has been considerably more research activity in chiral separations by CE than by EC methods since the introduction of the former technique. Chiral additives in CE have several advantages, some of which are highlighted in Table 11-2. [Pg.288]

Stalcup aiid co-workers [14] adapted this method to a continuous elution mini-prep electrophoresis apparatus shown in Fig. 11-3. In this apparatus, the end of the electrophoretic gel is continuously washed with elution buffer. The eluent can then be monitored using an HPLC detector (Fig. 11-4) and sent to a fraction collector where the purified enantiomers, as well as the chiral additive, may be recovered. In this system, the gel configuration was approximately 100 mm x 7 mm, and was aircooled. The number of theoretical plates obtained for 0.5 mg of piperoxan with this gel was approximately 200. A larger, water-cooled gel was able to handle 15 mg of... [Pg.291]

For the separation of enantiomers, we are interested in 0 -0,. Substituting a = I/ KV, using the expression relating the apparent mobility of an analyte to its binding constant with a chiral additive... [Pg.293]

I.3.I.6. Formation of C-C Bonds by Addition to Prostereogenic Carbonyl Compounds in the Presence of Chiral Additives... [Pg.147]

Most successful approaches involving addition reactions in the presence of chiral additives utilize organolithium, organomagnesium and the recently introduced organotitanium reagents, which are known to coordinate with amines, ethers, metal amides and alkoxides. [Pg.147]

The first reports on enantioselective addition reactions of achiral organometallic reagents, modified by aprotic chiral additives, described the addition of Grignard reagents to prostereogenic carbonyl compounds in the presence of ( + )-(/ ,/J)-2,3-dimethoxybutane (l)4 5, (-)-tetrahydro-2-methylfuran (2)6, (-)-l-[(tetrahydro-2-furanyl)methyl]pyrrolidine (3)7 or (-)-sparteine (4)8. The enantioselectivity, however, was poor (0-22% ee). [Pg.147]

A remarkable effect of the reaction temperature on the enantioselectivity of the addition of butyllithium to benzaldehyde was found with polystyrene-bound cvs-enofo-S-dimethylamino -(benzyloxy)bornane (8)12. When the soluble monomeric ligand 9 was tested, the enantioselectivity increased with decreasing temperature (53% ee at — 78 C). In contrast, the polymer-bound chiral additive 8 showed an optimum at — 20 C (32% ee). Although the enantioselectivity of this addition reaction is low, an advantage of a polymer-bound chiral auxiliary is that it can be removed by a simple filtration. [Pg.147]

The highest ee s reported to date for the addition of achiral organometallic reagents in the presence of aprotic chiral additives were observed with the C2-symmetric diamines 10, 11 and 12 (Table 25)13 — 15. Enantioselectivities as high as 89% ee were observed with chiral auxiliary 1012. Addition of phenyllithium to pentanal proceeds with lower enantioselection that the analogous addition of butyllithium to benzaldehydeu. Generally, the enantioselcctivity in-... [Pg.148]

R1 RJM Chiral Additive Solvent Temp. ("C) ee (%> Conlig. Yield (%) Ref... [Pg.148]


See other pages where Chirality additives is mentioned: [Pg.60]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.61]    [Pg.67]    [Pg.157]    [Pg.74]    [Pg.16]    [Pg.55]    [Pg.63]    [Pg.288]    [Pg.288]    [Pg.288]    [Pg.290]    [Pg.295]    [Pg.297]    [Pg.133]    [Pg.147]    [Pg.147]    [Pg.148]    [Pg.148]    [Pg.149]    [Pg.149]    [Pg.150]    [Pg.150]    [Pg.152]    [Pg.153]    [Pg.153]    [Pg.154]   
See also in sourсe #XX -- [ Pg.1614 ]




SEARCH



Chiral additives

© 2024 chempedia.info