Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral reagents, amino acid synthesis with

As a part of ongoing efforts to synthesize a potent, orally active anti-platelet agent, xemilofiban 1 [1], development of an efficient chemoenzymatic process for 2, the chiral yS-amino acid ester synthon (Fig. 1) was proposed. The scheme emphasized the creation of the stereogenic center as the key step. In parallel with the enzymatic approach, chemical synthesis of the / -amino acid ester synthon emphasized formation of a chiral imine, nucleophilic addition of the Reformatsky reagent, and oxidative removal of the chiral auxiliary. This chapter describes a selective amida-tion/amide hydrolysis using the enzyme Penicillin G amidohydrolase from E. coli to synthesize (R)- and (S)-enantiomers of ethyl 3-amino-5-(trimethylsilyl)-4-pen-tynoate in an optically pure form. The design of the experimental approach was applied in order to optimize the critical reaction parameters to control the stereoselectivity of the enzyme Penicillin G amidohydrolase. [Pg.437]

Amino acid synthesis. The reagent is a chiral glycine synthon (1) with a f-butyl group as enantio-controller for alkylation. Amino acids are recovered from hydrolysis of the products. [Pg.234]

Asymmetric amino acid synthesis. The reaction of aralkyl methyl ketones (2) with I as the chiral reagent in the presence of sodium cyanide in acetic acid affords... [Pg.506]

This reaction was first reported by Schollkopf in 1979. It is a synthesis of an unnatural nonproteinogenic amino acid from the lithiated enolate equivalent of a simple amino acid (e.g., glycine, alanine and valine), which involves the diastereoselective alkylation of the lithiated bis-lactim ether of an amino acid with an electrophile or an Aldol Reaction or Michael Addition to an o ,jS-unsaturated molecule and subsequent acidic hydrolysis. Therefore, the intermediate of the bis-lactim ether prepared from corresponding amino acids is generally referred to as the Schollkopf bis-lactim ether, " Schollkopf chiral auxiliary, Schollkopf reagent, or Schollkopf bis-lactim ether chiral auxiliary. Likewise, the Schollkopf bis-lactim ether mediated synthesis of chiral nonproteinogenic amino acid is known as the Schollkopf bis-lactim ether method, Schollkopf bis-lactim method, or Schollkopf methodology. In addition, the reaction between a lithiated Schollkopf bis-lactim ether and an electrophile is termed as the Schollkopf alkylation, while the addition of such lithiated intermediate to an Q ,j8-unsaturated compound is referred to as the Schollkopf-type addition. ... [Pg.2523]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

Sulfoxides without amino or carboxyl groups have also been resolved. Compound 3 was separated into enantiomers via salt formation between the phosphonic acid group and quinine . Separation of these diastereomeric salts was achieved by fractional crystallization from acetone. Upon passage through an acidic ion exchange column, each salt was converted to the free acid 3. Finally, the tetra-ammonium salt of each enantiomer of 3 was methylated with methyl iodide to give sulfoxide 4. The levorotatory enantiomer was shown to be completely optically pure by the use of chiral shift reagents and by comparison with a sample prepared by stereospecific synthesis (see Section II.B.l). The dextrorotatory enantiomer was found to be 70% optically pure. [Pg.57]

A diastereoselective synthesis of vicinal diamines has been described79. The aldehydes 56 derived from chiral amino acids 55 were converted into the A-benzylimines 57 and the latter were treated with organometallic reagents R2M in the presence of cerium(III)... [Pg.547]

A new stereocenter is formed when a synthon 143 with umpoled carbonyl reactivity (d reactivity) is introduced into aldehydes or imines. The enantioselective variant of this type of reaction was a longstanding problem in asymmetric synthesis. The very large majority of a-hetero-snbstitnted carbanions which serve as eqnivalents for synthons like 142 and 143 lead to racemic products with aldehydes or imines. However, enantiomerically pnre acylions and a-hydroxy carboxylic acids or aldehydes (144 and ent-144, respectively) as well as a-amino acids and aldehydes (145 and ent-145) are accessible either by nsing chiral d reagents or by reacting the components in the presence of chiral additives (Scheme 18). [Pg.877]

This review covers the recent literature (2002-2007) in which either multienzyme systems or, alternatively, true chemoenzymatic processes (i.e. those in which an enzyme is combined with a chemical catalysts/reagent in a key step) are employed for the synthesis of chiral amino acids and amines. Not included are those papers in which the term chemoenzymatic refers to the fact that the substrate for the biotransformation has simply been prepared via chemical synthesis. [Pg.23]

A group at the Academy of Sciences in Moscow 197) has synthesized chiral threonine. Derivatives of cyclic imino acids form copper complexes with glacine and carbonyl compounds. Hydroxyethylation with acetaldehyde and decomposition of the resulting complexes produced threonine with an optical purity of up to 97-100% and with threo/allo ratios of up to 19 1 197). The chiral reagents could be recovered and re-used without loss of stereoselectivity. The mechanism of this asymmetric synthesis of amino acids via glacine Schiff base/metal complexes was also discussed 197). [Pg.220]

Chiral sulfinimines 236 are very useful intermediates for the preparation of enantiomer-ically pure primary amines 237 (equation 158) . This reaction has been applied to the synthesis of a-amino acids . For sulfinimines obtained from simple ketones, lithium reagents are preferable for the addition , while for cyclic ketones organomagnesium compounds gave the best results. Addition of alkyl and aryl Grignard compounds to sulfinimines, derived from 3- and 4-substituted cyclohexanones, proceeds with excellent diastereoselectivity, depending on the stereochemistry of the ring substituents rather than the sulfinyl group . [Pg.575]


See other pages where Chiral reagents, amino acid synthesis with is mentioned: [Pg.67]    [Pg.468]    [Pg.446]    [Pg.222]    [Pg.149]    [Pg.740]    [Pg.543]    [Pg.186]    [Pg.250]    [Pg.4]    [Pg.1122]    [Pg.750]    [Pg.57]    [Pg.3]    [Pg.137]    [Pg.253]    [Pg.473]    [Pg.227]    [Pg.131]    [Pg.216]    [Pg.678]    [Pg.97]    [Pg.100]    [Pg.322]    [Pg.468]    [Pg.140]    [Pg.111]    [Pg.563]    [Pg.113]    [Pg.58]    [Pg.168]    [Pg.181]    [Pg.188]    [Pg.406]    [Pg.677]    [Pg.1129]    [Pg.233]    [Pg.299]    [Pg.391]   
See also in sourсe #XX -- [ Pg.1135 ]




SEARCH



Acid Reagents

Acidic reagents

Amino chirality

Chiral acids

Chiral amino acids

Chiral reagent

Chiral synthesis

Chirality, amino acids

Synthesis amino acids

© 2024 chempedia.info