Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral pollutants separation

Capillary electrophoresis has been used for the analysis of chiral pollutants, e.g., pesticides, polynuclear-aromatic hydrocarbons, amines, carbonyl compounds, surfactants, dyes, and other toxic compounds. Moreover, CE has also been utilized to separate the structural isomers of various... [Pg.96]

Analysis of chiral pollutants by capillary electrophoresis (CE) is a new trend in separation science. This entry describes separation and identification of chiral xenobiotics by using CE. Attempts have been made to describe types of chiral selectors, applications, optimization of separations, detection strategies, mechanisms of chiral separations, CE vs chromatography and sample preparation methods. [Pg.1834]

CE has been used for the analysis of chiral pollutants, e.g., pesticides, polynuclear aromatic hydrocarbons, amines, carbonyl compounds, surfactants, dyes, and other toxic compounds. Moreover, CE has also been utilized to separate the structural isomers of various toxic pollutants such as phenols, polyaromatic hydrocarbons, and so on. Sarac, Chankvetadze, and Blaschke " resolved the enantiomers of 2-hydrazino-2-methyl-3-(3,4-dihydroxyphenyl)propanoic acid using CD as the BGE additive. The CDs used were native, neutral, and ionic in nature with phosphate buffer as BGE. Welseloh, Wolf, and Konig investigated the CE method for the separation of biphenyls, using a phosphate buffer as BGE with CD as the chiral additive. Miura et al., used CE for the chiral resolution of seven phenoxy acid herbicides using methylated CDs as the BGE additives. Furthermore, the same group resolved 2-(4-chlorophenoxy) propionic acid (MCPP), 2-(2,4-dichlorophenoxy) propionic acid (DCPP), (2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chlorophenoxy) propionic acid (2,4-CPPA), [(2,4,5-... [Pg.1835]

The separation of the isomers of some environmental pollutants (chlor-danes, toxaphenes etc.) is a challenging job, while the chiral resolution of these pollutants is extremely difficult. A multidimensional gas chromatographic (MDcGC) approach for such types of chiral resolution of environmental pollutants has been proposed as the best choice. The MDcGC technique involves the use of two chiral columns of different polarities in series, each with a separate temperature control. The remarkable advantage of this technique, in both a qualitative and a quantitative sense, is a consequence of the fact that a valveless pneumatic system, which involves a live T-piece, allows a preselected small fraction to be cut from the eluate of the first column and transferred quantitatively and reproducibly to the second column. This technique may be used for the complete separation of chiral pollutants, with increased sensitivity and selectivity. Examples of this technique for the chiral resolution of environmental pollutants can be found in several publications [93-96, 122, 123]. [Pg.200]

A few reports are available on chiral separations of pollutants using this modality of liquid chromatography. The separated chiral pollutants are 2-(2-chlorophenoxy)propionic acid and 2-(4-chlorophenoxy)propionic acid on n-alkyl-)8-D-glucopyranoside [17], ibuprofens on vancomycin [18] and PCBs on y-cyclodextrin [19]. Marina etal. [20] reported chiral separations of polychlorinated biphenyls (PCBs) 45, 84, 88, 91, 95, 132, 136, 139, 149, 171, 183 and 196 by MEKC using cyclodextrin chiral selectors. Mixtures of and y-cyclodextrins were used as chiral modifiers in a 2-(yV-cyclohexylamino)ethanesulfonic acid (CHES) buffer containing urea and sodium dodecyl sulfate (SDS) micelles. A mixture of PCBs 45, 88, 91, 95, 136, 139, 149 and 196 was separated into all 16 enantiomers in an... [Pg.277]

Various approaches to chiral resolution have been developed for the analysis of pharmaceuticals and drugs but, unfortunately, few reports and monographs are available on the chiral separation of pollutants. Therefore, we have set out to write this book, which deals with the distribution, toxicities and art of analysis of chiral pollutants by gas chromatography and liquid chromatography that is, by high performance liquid chromatography (HPLC), sub- and supercritical fluid chromatography (SFC),... [Pg.354]


See other pages where Chiral pollutants separation is mentioned: [Pg.227]    [Pg.261]    [Pg.179]    [Pg.72]    [Pg.97]    [Pg.647]    [Pg.150]    [Pg.800]    [Pg.1835]    [Pg.16]    [Pg.16]    [Pg.17]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.29]    [Pg.29]    [Pg.30]    [Pg.145]    [Pg.150]    [Pg.218]    [Pg.230]    [Pg.273]    [Pg.274]    [Pg.286]    [Pg.287]    [Pg.288]    [Pg.25]    [Pg.575]    [Pg.70]    [Pg.72]    [Pg.578]    [Pg.70]    [Pg.72]    [Pg.97]   


SEARCH



Chiral pollutants

Chiral separations

Chiral separations chirality

Chiralic separation

Enantiomeric separation chiral pollutants

Separation of chiral pollutants

Separation of chiral pollutants summarized

© 2024 chempedia.info