Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral phenanthrolines, 1,10-phenanthroline

The extent of asymmetric induction with chiral Rh(I) complexes remains unsatisfactory. Enantioselective reduction of acetophenone catalyzed by a Rh complex of the chiral phenanthroline 11 in 2-propanol containing KOH at 60 °C af-... [Pg.232]

Chelucci and Thummel reported chiral phenanthrolines containing camphor derivatives 327. Camphor 326, a hindered ketone, causes the Friedlander reaction to proceed in low pelds. They suggested a modification starting from 225 in which 327 forms in 51 % overall 5deld (Scheme 67) (99SC1665). [Pg.182]

In 2010, Nicholas and co-workers studied the enantioselective ben lic amination reactions.As shown in Table 1.11, they tested different kinds of ligands including (S)-histidine, (5)-proline, diimine ligands, and chiral phenanthroline. Although the corresponding product can be prepared with high yields, the enantioselectivity is low. The preliminary results from the mechanistic studies support a stepwise C—H bond insertion process, most likely through the intermediacy of carbon-centered radicals. Subsequently, they expanded this reaction to an intramolecular version with up to 18% ee. ... [Pg.49]

Chiral Phenanthrolines in Asymmetric Catalysis. Synthetic modifications on the Phenanthroline core can provide access to highly valuable chiral phenanthroline derivatives with important applications in asymmetric catalysis (Scheme 1). For example, LI has been utilized in copper-catalyzed allylic oxidations, L2 in palladium-catalyzed allylation reactions, and L3-type ligands in rhodium-catalyzed enantioselective hydrosilylation reactions of acetophenone. ... [Pg.525]

Technetium-99m coordination compounds are used very widely as noniavasive imaging tools (35) (see Imaging technology Radioactive tracers). Different coordination species concentrate ia different organs. Several of the [Tc O(chelate)2] types have been used. In fact, the large majority of nuclear medicine scans ia the United States are of technetium-99m complexes. Moreover, chiral transition-metal complexes have been used to probe nucleic acid stmcture (see Nucleic acids). For example, the two chiral isomers of tris(1,10-phenanthroline)mthenium (IT) [24162-09-2] (14) iateract differentiy with DNA. These compounds are enantioselective and provide an addition tool for DNA stmctural iaterpretation (36). [Pg.173]

Recently, Lacour, Sauvage and coworkers were able to show that the association of chiral [CuL2] complexes (L=2-R-phen,6-R-bpy and2-iminopyridine) with TRISPHAT 8 leads to an NMR enantiodifferentiation, which allows the determination of the kinetics of racemization of the complexes (bpy=2,2 -bipyri-dine phen=l,10-phenanthroline) [119]. This type of application has recently been reported in conjunction with chiral sandwich-shaped trinuclear silver(l) complexes [122]. Several reports, independent from Lacour s group,have confirmed the efficiency of these chiral shift agents [123-127]. Finally, TRISPHAT can be used to determine the enantiomeric purity of (r] -arene)chromium complexes. These results broaden the field of application of 8 to chiral neutral, and not just cationic, species [114,128,129]. [Pg.35]

Pyridine-based N-containing ligands have been tested in order to extend the scope of the copper-catalyzed cyclopropanation reaction of olefins. Chelucci et al. [33] have carefully examined and reviewed [34] the efficiency of a number of chiral pyridine derivatives as bidentate Hgands (mainly 2,2 -bipyridines, 2,2 6, 2 -terpyridines, phenanthrolines and aminopyridine) in the copper-catalyzed cyclopropanation of styrene by ethyl diazoacetate. The corresponding copper complexes proved to be only moderately active and enantios-elective (ee up to 32% for a C2-symmetric bipyridine). The same authors prepared other chiral ligands with nitrogen donors such as 2,2 -bipyridines 21, 5,6-dihydro-1,10-phenanthrolines 22, and 1,10-phenanthrolines 23 (see Scheme 14) [35]. [Pg.104]

Ligand 92 was readily prepared by reaction of (+)-pinocarvone with 1-phenacylpyridinium iodide. The authors similarly prepared corresponding 5,6-dihydro-1,10-phenanthrolines derived from (+)-pinocarvone and a tetrahydroquinolone (structure 93, [127]) and obtained up to 81% in the palladium-catalyzed test reaction. Chelucci et al. [ 128] reported the synthesis of chiral Ci-symmetric 1,10-phenanthrolines incorporated in asteroid backbone. Structure 94 derived from 5o -cholestan-4-one in Scheme 51, allowed very high yield and up to 96% ee using BSA and tetrabutylammonium fluoride to generate the malonate anion. [Pg.134]

Helquist et al. [129] have reported molecular mechanics calculations to predict the suitability of a number of chiral-substituted phenanthrolines and their corresponding palladium-complexes for use in asymmetric nucleophilic substitutions of allylic acetates. Good correlation was obtained with experimental results, the highest levels of asymmetric induction being predicted and obtained with a readily available 2-(2-bornyl)-phenanthroline ligand (90 in Scheme 50). Kocovsky et al. [130] prepared a series of chiral bipyridines, also derived from monoterpene (namely pinocarvone or myrtenal). They synthesized and characterized corresponding Mo complexes, which were found to be moderately enantioselective in allylic substitution (up to 22%). [Pg.135]

There are more examples of a second type in which the chirality of the metal center is the result of the coordination of polydentate ligands. The easiest case is that of octahedral complexes with at least two achiral bidentate ligands coordinated to the metal ion. The prototype complex with chirality exclusively at the metal site is the octahedral tris-diimine ruthenium complex [Ru(diimine)3 with diimine = bipyridine or phenanthroline. As shown in Fig. 2 such a complex can exist in two enantiomeric forms named A and A [6,7]. The bidentate ligands are achiral and the stereoisomery results from the hehcal chirality of the coordination and the propeller shape of the complex. The absolute configuration is related to the handness of the hehx formed by the hgands when rotated... [Pg.273]

There are very few examples of asymmetric synthesis using optically pure ions as chiral-inducing agents for the control of the configuration at the metal center. Chiral anions for such an apphcation have recently been reviewed by Lacour [19]. For example, the chiral enantiomerically pure Trisphat anion was successfully used for the stereoselective synthesis of tris-diimine-Fe(ll) complex, made configurationally stable because of the presence of a tetradentate bis(l,10-phenanthroline) ligand (Fig. 9) [29]. Excellent diastereoselectivity (>20 1) was demonstrated as a consequence of the preferred homochiral association of the anion and the iron(ll) complex and evidence for a thermodynamic control of the selectivity was obtained. The two diastereoisomers can be efficiently separated by ion-pair chromatography on silica gel plates with excellent yields. [Pg.281]

Hydrosilylation of dienes accompanied by cyclization is emerging as a potential route to the synthesis of functionalized carbocycles. However, the utility of cycliza-tion/hydrosilylation has been Umited because of the absence of an asymmetric protocol. One example of asymmetric cycUzation/hydrosilylation has been reported very recently using a chiral pyridine-oxazoUne ligand instead of 1,10-phenanthroline of the cationic palladium complex (53) [60]. As shown in Scheme 3-21, the pyridine-oxazoUne Ugand is more effective than the bisoxazoUne ligand in this asymmetric cyclization/hydrosilylation of a 1,6-diene. [Pg.86]

Tri (rt-butyl)phosphate (TBP), 79 674 Tri-l,10-phenanthroline-iron(II), 7 589 1-Triacontanol physical properties of, 2 3t cis-21-Triacontenoic acid physical properties, 5 32t Triacetate chiral stationary phase, 6 88t Triacetate fibers, 24 614 Triacetone amine... [Pg.966]

In order to obtain asymmetric spiro compounds, there are two different possibilities. First, one can connect two different chromophores via a common spiro center. The thiophene compounds 39a and 39b are one example [84, 85]. Second, one can connect two equal but asymmetric chromophores. Based on this principle are Spiro-PBD (40), spiro-bridged bis(phenanthrolines) (41) [86], and the branched compounds Octol (42a) and Octo2 (42b) [87]. Because of their symmetry, these molecules are chiral. The glass transition temperatures of 40 and 42b are reported to be 163 and 236°C, respectively [88], Unfortunately, reports on the thermal properties of 39 and 41 are lacking. [Pg.115]

Since 1980 the interest in this reaction increased because enantiospecificity was introduced and much more valuable products could be made. A wide variety of ligands was tested, such as chiral dipyridines, phenanthrolines, diphosphines, aminoalcohols, bis-oxazolines, bis-oxazolines with a third donor atom in the centre, bis-thioureas, diamines, etc [33], In 1981 the highest e.e. reported was still only 20%. For many years the best results were obtained with chiral diimines and phenanthrolines but e.e. s were below 70% [34], Pfaltz introduced bis-oxazolines for this reaction and obtained e.e. s as high as 91% [35] in 1991. [Pg.95]

Monofunctionalized and difunctionalized Ru(ll) coordination complexes can be used as enantiomerically pure building blocks and can be cross-coupled to diastereochemically pure multi-Ru(ll) complexes. The enantiomerically pure [(bpy)2Ru(3,8-diethynyl-l,10-phenanthroline)] (PF6)2 (45), [(bpy)2Ru(3-ethynyl-l,10-phenanthroline)] (PF6)2 (44),and [(bpy)2Ru(3-bromo-l,10-phen-anthroline)] (PF6)2 (46) were isolated in their A and A forms. Chiral precursor... [Pg.67]

The amino acid derived chiral oxazolidinone 188 is a very commonly used auxiliary in Diels-Alder and aldol reactions. However, its use in diastereoselective 1,3-dipolar cycloadditions is less widespread. It has, however, been used with nitrile oxides, nitrones, and azomethine ylides. In reactions of 188 (R = Bn, R =Me, R = Me) with nitrile oxides, up to 92% de have been obtained when the reaction was performed in the presence of 1 equiv of MgBr2 (303). In the absence of a metal salt, much lower selectivities were obtained. The same observation was made for reactions of 188 (R = Bn, R = H, R = Me) with cyclic nitrones in an early study by Murahashi et al. (277). In the presence of Znl2, endo/exo selectivity of 89 11 and up to 92% de was observed, whereas in the absence of additives, low selectivities resulted. In more recent studies, it has been shown for 188 (R =/-Pr, R = H, R =Me) that, in the presence of catalytic amounts of Mgl2-phenanthroline (10%) (16) or Yb(OTf)3(20%) (304), the reaction with acyclic nitrones proceeded with high yields and stereoselectivity. Once again, the presence of the metal salt was crucial for the reaction no reaction was observed in their absence. Various derivatives of 188 were used in reactions with an unsubstituted azomethine ylide (305). This reaction proceeded in the absence of metal salts with up to 60% de. The presence of metal salts led to decomposition of the azomethine ylide. [Pg.857]

O Neill and Helquist have also discovered that 1,10-phenanthroline 48 undergoes samarium iodide-promoted coupling with ketones and this process has been applied to the chiral ketone (—)-thujone 53 to give the corresponding phenanthroline 54 as a single stereoisomer (Equation 5) <19990L1659>. [Pg.1239]

Section 2 discusses the syntheses of different classes of concave acids and bases. Convergent synthetic strategies were chosen for an easy structural variation of the reagents (modular assembly). Section 3 characterizes the concave acids and concave bases and checks whether the acid/base properties of the parent compounds benzoic acid, pyridine and 1,10-phenanthroline are conserved in the bimacrocyclic structures. In Section 4, the influence of the concave shielding on the reactivity and selectivity of the concave reagents is measured in model reactions. In principle, the concave shielding should be able to influence inter- and intramolecular competitions as well as chemoselectivity and (dia)stereoselectivity. If the reagent is chiral, enantioselectivity should also be observable. [Pg.61]

The selectivity studies show that concave pyridines 3 (Table 1) not only catalyze the addition of alcohols to ketenes, but they may also differentiate between different OH groups in inter- and intramolecular competitions. They are not only reactive but also selective. First experiments with a chiral concave 1,10-phenanthroline show that enantioselectivity is also possible [20]. Structure 9 shows the concave 1,10-phenanthroline 21 g which catalyzes the addition of R-1-phenylethanol (R-68) to diphenylketene (59a) 20% faster than the addition of the S-enantiomer S-68. [Pg.91]

If the transition metal could exist in two different oxidation states in the complex 87, one would have a concave redox reagent which could be useful for instance in epoxidation reactions [56]. The concave shielding of the metal ion should influence the regio-, stereo- and, if the concave 1,10-phenanthroline 21 is chiral, enantioselectivity of an epoxidation. [Pg.96]


See other pages where Chiral phenanthrolines, 1,10-phenanthroline is mentioned: [Pg.164]    [Pg.73]    [Pg.30]    [Pg.33]    [Pg.248]    [Pg.379]    [Pg.1520]    [Pg.248]    [Pg.73]    [Pg.143]    [Pg.276]    [Pg.285]    [Pg.67]    [Pg.373]    [Pg.473]    [Pg.359]    [Pg.381]    [Pg.354]    [Pg.70]    [Pg.160]    [Pg.234]    [Pg.863]    [Pg.48]    [Pg.265]    [Pg.162]    [Pg.468]    [Pg.979]   
See also in sourсe #XX -- [ Pg.525 , Pg.526 ]




SEARCH



1 : 10-Phenanthroline

1 : 10-phenanthrolin

Phenanthroline derivative chiral

© 2024 chempedia.info