Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium-catalyzed reactions allylations

Chiral phosphinous amides have been found to act as catalysts in enantio-selective allylic alkylation. Horoi has reported that the palladium-catalyzed reaction of ( )-l,3-diphenyl-2-propenyl acetate with the sodium enolate of dimethyl malonate in the presence of [PdCl(7i-allyl)]2 and the chiral ligands 45 gave 46 in 51-94% yields and up to 97% ee (Scheme 38). It is notorious that when the reaction is carried out with the chiral phosphinous amide (S)-45a, the product is also of (S) configuration, whereas by using (R)-45b the enantiomeric (R) product is obtained [165]. [Pg.97]

The palladium-catalyzed asymmetric allylic substitution using seven different phosphano-oxazoline ligands at various ligand-to-metal ratios was also studied.112 An aluminum block containing 27 wells was placed in a dry box in which the reactions were carried out in parallel. Analyses were performed by conventional chiral GC equipped with an autosampler. Such a setup allowed about 33 catalyst evaluations per day. Apparently, only a few dozen were carried out in the study, resulting in the identification of a catalyst showing an ee-value of 74% in the reaction of 4-acyloxy-2-pentene with malonate.112 It is not clear whether further ligand diversification would lead to catalysts more selective than the record set in this case by the Trost-catalyst (92% ee).113... [Pg.538]

The molybdenum-catalyzed asymmetric reaction differs from the palladium-catalyzed reaction in several ways, the most important of which is the different regios-electivity achieved. Molybdenum-catalyzed reactions favor the most sterically hindered position (Eq. 11.39), in contrast with palladium catalysis. The molybdenum-catalyzed allylations also suffer from significantly lower reactivity. [Pg.398]

Palladium-catalyzed oxidation of 1,4-dienes has also been reported. Thus, Brown and Davidson28 obtained the 1,3-diacetate 25 from oxidation of 1,4-cyclohexadiene by ben-zoquinone in acetic acid with palladium acetate as the catalyst (Scheme 3). Presumably the reaction proceeds via acetoxypalladation-isomerization to give a rr-allyl intermediate, which subsequently undergoes nucleophilic attack by acetate. This principle, i.e. rearrangement of a (allyl)palladium complex, has been applied in nonoxidative palladium-catalyzed reactions of 1,4-dienes by Larock and coworkers29. Akermark and coworkers have demonstrated the stereochemistry of this process by the transformation of 1,4-cyclohexadiene to the ( r-allyl)palladium complex 26 by treatment... [Pg.660]

The chloroacetoxylation reaction is synthetically useful since the chloride can be substituted with either retention [Pd(0)-catalyzed reaction] or inversion (Sjv2 reaction) by a number of nucleophiles. In this way both the cis and trans isomers are accessible and have been prepared from a number of allylic acetates (Schemes 5 and 6). In a subsequent reaction the allylic acetate can be substituted by employing a copper- or palladium-catalyzed reaction. The latter reactions are stereo specific. [Pg.664]

In the second approach55 an allylsilane was employed as carbon nucleophile in the side chain. Allylsilanes have been frequently used as masked allyl carbanions, usually in reactions with a keto function57. Palladium-catalyzed reaction of allylsilane 57 with LiCl under similar conditions as used for the other intramolecular 1,4-oxidations afforded 58 (equation 22). Interestingly, the carbochlorination over the diene was highly 1,4-syn... [Pg.673]

Enantio- and diastereoselective syntheses of a variety of heterocycles were accomplished by combining the ruthenium-catalyzed Alder-ene reaction with a palladium-catalyzed asymmetric allylic alkylation (AAA) (Scheme 7). For the AAA, y>-nitrophenol was found to function as a suitable leaving group and yet was stable to the Alder-ene conditions. Extensive solvent studies were performed to determine the best conditions for the one-pot procedure. [Pg.568]

A single reaction has been described in which a palladium-catalyzed reaction was employed to form an alkyne [45], Thus, attempted alkylation of carbonate 145 with dimethyl malonate in the presence of Pd(PPh3)4 gave a mixture of enyne 87 and the alkylation product 86 in a 15 1 ratio (Scheme 14.37). Methoxide caused an elimination in (jT-allyl)palladium intermediate 146, which is apparently faster under these conditions than a reaction with the nucleophile (cf. Eq. 14.9). The synthetic importance of this process seems to be limited. [Pg.871]

Scheme 17.1 Selected palladium-catalyzed reactions of allenes proceeding via Jt-allyl complexes. Scheme 17.1 Selected palladium-catalyzed reactions of allenes proceeding via Jt-allyl complexes.
The regioselectivity in palladium-catalyzed alkylations has been attributed to the dynamic behavior of trihapto pentadienyl metal complexes60. For example, competing electronic and steric effects influence product formation in dienyl epoxides, but in palladium-catalyzed reactions steric factors were often found to be more important. Thus, alkylation of dienyl epoxide 76 with bulky nucleophiles such as bis(benzenesulfonyl)me-thane in the presence of (Ph3P)4Pd occurred exclusively at the terminal carbon of the dienyl system producing allyl alcohol 77 (equation 39). However, the steric factors could be overcome by electronic effects when one of the terminal vinylic protons was replaced with an electron-withdrawing group. Thus, alkylation of dienyl epoxide 78 affords homoal-lylic alcohol 79 as the major product (equation 40). [Pg.717]

The mechanism of the Zn chloride-assisted, palladium-catalyzed reaction of allyl acetate (456) with carbonyl compounds (457) has been proposed [434]. The reaction involves electroreduction of a Pd(II) complex to a Pd(0) complex, oxidative addition of the allyl acetate to the Pd(0) complex, and Zn(II)/Pd(II) transmetallation leading to an allylzinc reagent, which would react with (457) to give homoallyl alcohols (458) and (459) (Scheme 157). Substituted -lactones are electrosynthesized by the Reformatsky reaction of ketones and ethyl a-bromobutyrate, using a sacrificial Zn anode in 35 92% yield [542]. The effect of cathode materials involving Zn, C, Pt, Ni, and so on, has been investigated for the electrochemical allylation of acetone [543]. [Pg.583]

For further details of this reaction, the reader is referred to Chapter 9. The catalytic allylation with nucleophiles via the formation of Ti-allyl metal intermediates has produced synthetically useful compounds, with the palladium-catalyzed reactions being known as Tsuji-Trost reactions [31]. The reactivity of Ti-allyl-iridium complexes has been widely studied [32] for example, in 1997, Takeuchi idenhfied a [lrCl(cod)]2 catalyst which, when combined with P(OPh)3, promoted the allylic alkylation of allylic esters 74 with sodium diethyl malonate 75 to give branched... [Pg.260]

As with the silanes, some of the most useful synthetic procedures involve electrophilic attack on alkenyl and allylic stannanes. The stannanes are considerably more reactive than the corresponding silanes because there is more anionic character on carbon in the C—Sn bond and it is a weaker bond.103 104 There are also useful synthetic procedures in which organotin compounds act as carbanion donors in palladium-catalyzed reactions, as discussed in Section 8.2.3 Organotin compounds are also very important in free-radical reactions, which will be discussed in Chapter 10. [Pg.579]

The Cope rearrangement of 24 gives 2,6,10-undecatrienyldimethylamine[28], Sativene (25j[29] and diquinane (26) have been synthesized by applying three different palladium-catalyzed reactions [oxidative cyclization of the 1,5-diene with Pd(OAc)2, intramolecular allylation of a /i-keto ester with allylic carbonate, and oxidation of terminal alkene to methyl ketone] using allyloctadienyl-dimethylamine (24) as a building block[30]. [Pg.501]

Palladium catalyzes the carbonylation of allylic, vinylic, benzylic, and aromatic halides in alcohols to form esters under conditions similar to those required by the nickel carbonyl catalyst (11). The palladium-catalyzed reaction offers the advantage of not requiring the use of highly toxic and volatile nickel carbonyl, and perhaps higher catalyst activity, although accurate comparisons have not been made. Like the nickel reaction, the palladium reaction... [Pg.325]

The mechanism of the palladium-catalyzed reaction is similar to that of the allyl chloride-nickel carbonyl reaction described above, but more complex, at least when phosphine ligands are present (14). The first step is believed... [Pg.327]

The cyclofunctionalization of cyclohexa-2,4-dieneacetic acids results in 1,4-addition to form c/s-fused 7-lactones, as shown in equation (13) and Table 4. Most reaction conditions gave products with the electrophile trans to the lactone ring (entries 1-4), but the stereochemistry of the palladium-catalyzed reaction was reversed if an excess of a complexing ligand was added to the reaction (entries 5 and 6).49>s0 Results of lactonization in cyclohepta-2,4-dieneacetic acid systems were similar, but selenolactonization produced 1,2-addition products under some conditions.31 It is possible that these products result from a 1,3-rearrangement of the initial allyl selenide.52... [Pg.371]

The palladium-catalyzed reaction of aryl- and vinyl-tin reagents with stereochemically defined allyl chlorides proceeds with overall retention of configuration, indicating that the second step, entailing interaction of the iT-allylpalladium complex and the organotin, proceeds by transmetallation and reductive elimination (attack at Pd, retention) (equations 166 and 167).142145 Comparable results were obtained with cyclic vinyl epoxides and aryltins.143... [Pg.619]

A tandem palladium-catalyzed reaction can effect a similar transformation to produce 2-vinyl-substituted heterocyclic systems as in Eq. 8E.11. By varying the amino acid moiety of the ligand, 83% ee could be obtained from the use of the glycine-derived ligand 129 [161]. A maximum enantioselectivity of 65% ee has been recorded for this type of reaction in an earlier study with BINAP as ligand [ 162]. Because both ( )- and (Z)-isomers gave the same enantioselectivity, attack on the rapidly interconverting 7t-allyl intermediates seems to determine the selectivity. Modest enantioselectivities have been reported for the related asymmetric preparation of 2-vinylpiperazine and 1,4-benzodioxane derivatives [163,164],... [Pg.625]

The five-carbon unit, l-bromo-l,4-pentadiene, is easily available from the palladium-catalyzed reaction of allyl bromide with acetylene (11), but we have not yet studied its reactions. [Pg.231]


See other pages where Palladium-catalyzed reactions allylations is mentioned: [Pg.427]    [Pg.872]    [Pg.182]    [Pg.553]    [Pg.569]    [Pg.487]    [Pg.131]    [Pg.109]    [Pg.381]    [Pg.195]    [Pg.57]    [Pg.672]    [Pg.326]    [Pg.700]    [Pg.702]    [Pg.458]    [Pg.24]    [Pg.173]    [Pg.461]    [Pg.783]    [Pg.103]    [Pg.369]    [Pg.245]    [Pg.226]    [Pg.256]    [Pg.327]    [Pg.641]    [Pg.669]   


SEARCH



Allylation palladium catalyzed

Allylations palladium-catalyzed

Allyls palladium

Palladium allylation

Palladium-catalyzed reactions

© 2024 chempedia.info