Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral metal complexes optical resolution

Chiral sulfoxides have emerged as versatile building blocks and chiral auxiliaries in the asymmetric synthesis of pharmaceutical products. The asymmetric oxidation of prochiral sulfides with chiral metal complexes has become one of the most effective routes to obtain these chiral sulfoxides.We have recently developed a new heterogeneous catalytic system (WO3-30% H2O2) which efficiently catalyzes both the asymmetric oxidation of a variety of thioethers (1) and the kinetic resolution of racemic sulfoxides (3), when used in the presence of cinchona alkaloids such as hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQD)2-PYR], Optically active sulfoxides (2) are produced in high yields and with good enantioselectivities (Figure 9.3). ... [Pg.288]

The demonstration of the optical activity of octahedral complexes was important in confirming Alfred Werner s intuitive ideas about coordination chemistry. Early work involved the resolution of complexes characterized by optical rotations. Modem instmments for optical rotatory dispersion were developed first, but circular dichroism (CD) spectra proved to be more useful. CD has been a powerful tool for detailed studies of the stereochemistry of octahedral complexes. Contributions to rotational strength of chelate ring conformational, configurational, and vicinal contributions are additive. Chiral metal complexes are now used in enantioselective synthesis of chiral pharmaceuticals. [Pg.275]

In a catalytic asymmetric reaction, a small amount of an enantio-merically pure catalyst, either an enzyme or a synthetic, soluble transition metal complex, is used to produce large quantities of an optically active compound from a precursor that may be chiral or achiral. In recent years, synthetic chemists have developed numerous catalytic asymmetric reaction processes that transform prochiral substrates into chiral products with impressive margins of enantio-selectivity, feats that were once the exclusive domain of enzymes.56 These developments have had an enormous impact on academic and industrial organic synthesis. In the pharmaceutical industry, where there is a great emphasis on the production of enantiomeri-cally pure compounds, effective catalytic asymmetric reactions are particularly valuable because one molecule of an enantiomerically pure catalyst can, in principle, direct the stereoselective formation of millions of chiral product molecules. Such reactions are thus highly productive and economical, and, when applicable, they make the wasteful practice of racemate resolution obsolete. [Pg.344]

The reasons for the increasing acceptance of enzymes as reagents rest on the advantages gained from utilizing them in organic synthesis Isolated or wholecell enzymes are efficient catalysts under mild conditions. Since enzymes are chiral materials, optically active molecules may be produced from prochiral or racemic substrates by catalytic asymmetric induction or kinetic resolution. Moreover, these biocatalysts may perform transformations, which are difficult to emulate by transition-metal catalysts, and they are environmentally more acceptable than metal complexes. [Pg.74]

Asymmetric synthesis (i) has gained new momentum with the potential k use of homogeneous catalysts. The use of a transition metal complex with chiral ligands to catalyze a synthesis asymmetrically from a prochiral substrate is beneficial in that resolution of a normally obtained racemate product may be avoided. In certain catalytic hydrogenations of olefinic bonds, optical purities approaching 100% have been attained (2,3,4,5) hydrogenations of ketones (6,... [Pg.129]

Synthesis of chiral atropisomeric diphosphine type ligands is a current challenge in chemical research because their late transition metal complexes usually provide high enantioselectivity in homogenous catalytic reactions. [28] In practical point of view, preparation and optical resolution of racemic diphosphine oxides followed by the reduction of the separated enantiomers are usually more advantageous than an expensive enantioselective synthesis of one diphosphine enantiomer. [29]... [Pg.82]

The most popular methods of preparing optically active l-octyn-3-ol involve asymmetric reduction of l-octyn-3-one with optlcally-active alcohol complexes of lithium aluminum hydride or aluminum hydride. These methods give optical purities and chemical yields similar to the method reported above. A disadvantage of these metal-hydride methods is that some require exotic chiral alcohols that are not readily available in both enantiomeric forms. Other methods include optical resolution of the racemic propargyl alcohol (100 ee) (and Note 11) and microbial asymmetric hydrolysis of the propargyl acetates (-15% ee for l-heptyn-3-ol)... [Pg.62]

The development of the catalytic hydrogenation system based on RhCl(PPh3)3 and methods for the resolution of optical isomers of tertiary phosphines occurred around the same time (1965), and this led to the possibility of asymmetric catalytic hydrogenation of prochiral unsaturated substances with C=C, C=0, and C=N bonds using transition metal complexes with chiral phosphine ligands. Such tertiary phosphines are of three types ... [Pg.1235]

Preparative Methods racemic l,l -bi-2,2 -naphthol (BINOL) is most conveniently prepared by the oxidative coupling reaction of 2-naphthol in the presence of transition metal complexes (eq 1). The resolution of racemic BINOL with cinchonine may be performed via the cyclic phosphate (eq 2). An alternative procedure to provide directly optically active BINOL is the oxidative coupling of 2-naphthol catalyzed by Cu salt in the presence of chiral amines (eq 3). The best procedure uses (+)-amphetamine as the chiral ligand and provides BINOL in 98% yield and 96% ee. Above 25 °C the Cu /(+)-amphetamine/(5)-BINOL complex precipitates, while the more soluble Cu /(+)-amphetamine/(I )-BINOL complex is slowly transformed into the former complex. 9,9 -Biphenanthrene-10,10 -diol has also been prepared in 86% yield and with 98% ee by a similar asymmetric oxidative coupling of 9-phenanthrol in the presence of (I )- 1,2-diphenylethylamine. ... [Pg.86]

Asymmetric catalysis is one of the most economical processes for the production of chiral compounds, considering the high turnover levels of most homogeneous catalysts and the fact that the optically active catalyst introduces its chiral information during each new catalytic cycle. The asymmetric catalyst molecules are mainly synthesized by coordination of optically active ligands to a metal rather than resolution of complexes in which the optical activity lies at the metal, and which are prone to racemization. These chiral complexes involve only a few metals. [Pg.213]


See other pages where Chiral metal complexes optical resolution is mentioned: [Pg.239]    [Pg.80]    [Pg.580]    [Pg.15]    [Pg.308]    [Pg.69]    [Pg.23]    [Pg.670]    [Pg.274]    [Pg.284]    [Pg.1421]    [Pg.45]    [Pg.116]    [Pg.135]    [Pg.259]    [Pg.188]    [Pg.114]    [Pg.462]    [Pg.73]    [Pg.143]    [Pg.153]    [Pg.161]    [Pg.99]    [Pg.36]    [Pg.160]    [Pg.710]    [Pg.711]    [Pg.31]    [Pg.259]    [Pg.188]    [Pg.145]    [Pg.7]    [Pg.143]    [Pg.257]    [Pg.670]    [Pg.178]    [Pg.494]   
See also in sourсe #XX -- [ Pg.153 , Pg.154 , Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.164 ]




SEARCH



Chiral complexes

Chiral metal

Chiral metal complexes

Chiral metal complexes metals

Chiral resolution

Chirality complexes

Chirality/Chiral complexes

Metallic complexes, chirality

Optical resolution

Resolution metal complexes

© 2024 chempedia.info