Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral Lewis Base Catalysis

Two patterns are possible in the activation mechanism by simple chiral Lewis base catalysts. One is through the activation of nucleophiles such as aUyltrichlorosilanes or ketene trichlorosilyl acetals via hypervalent silicate formation using organic Lewis bases such as chiral phosphoramides or A-oxides. In this case, catalysts are pure organic compounds (see Chapter 11). The other is through the activation of nucleophiles by anionic Lewis base conjugated to metals. In this case, transmetal-lation is the key for the nucleophile activation. This type of asymmetric catalysis is the main focus of this section. [Pg.394]

Aldol reactions of silyl enolates are promoted by a catalytic amount of transition metals through transmetallation generating transition metal enolates. In 1995, Shibasaki and Sodeoka reported an enantioselective aldol reaction of enol silyl ethers to aldehydes using a Pd-BINAP complex in wet DMF. Later, this finding was extended to a catalytic enantioselective Mannich-type reaction to a-imino esters by Sodeoka s group [Eq. (13.21)]. Detailed mechanistic studies revealed that the binuclear p-hydroxo complex 34 is the active catalyst, and the reaction proceeds through a palladium enolate. The transmetallation step would be facilitated by the hydroxo ligand transfer onto the silicon atom of enol silyl ethers  [Pg.394]

Yamamoto reported an enantioselective allylation of aldehydes catalyzed by AgF-p-tol-BINAP complex, [Eq. (13.24)]. High enantioselectivity was obtained [Pg.395]


Lewis-Base Catalysis via Intermediate Formation of a Chiral Zwitterionic Enolate... [Pg.165]

Other reactions not described here are formal [3 -i- 2] cycloadditions of a,p-unsaturated acyl-fluorides with allylsilanes [116], or the desymmetrization of meso epoxides [117]. For many of the reactions shown above, the planar chiral Fe-sandwich complexes are the first catalysts allowing for broad substrate scope in combination with high enantioselectivities and yields. Clearly, these milestones in asymmetric Lewis-base catalysis are stimulating the still ongoing design of improved catalysts. [Pg.170]

The addition of an enolsilane to an aldehyde, commonly referred to as the Mukaiyama aldol reaction, is readily promoted by Lewis acids and has been the subject of intense interest in the field of chiral Lewis acid catalysis. Copper-based Lewis acids have been applied to this process in an attempt to generate polyacetate and polypropionate synthons for natural product synthesis. Although the considerable Lewis acidity of many of these complexes is more than sufficient to activate a broad range of aldehydes, high selectivities have been observed predominantly with substrates capable of two-point coordination to the metal. Of these, benzy-loxyacetaldehyde and pyruvate esters have been most successful. [Pg.114]

An important area of organocatalysis that was also initiated in the early 1990s has been the realm of Lewis base catalysis. ° On the basis of the noninmitive activation principle of silyl bonding rehybridization, Denmark and Iseki introduced chiral and DMF variants as effective catalysts for enantioselec-... [Pg.318]

CHIRAL LEWIS BASE-LEWIS ACID BIFUNCTIONAL CATALYSIS... [Pg.397]

The chemistry of asymmetric allylation of carbonyl compounds has further progressed since the review in Comprehensive Asymmetric Catalysis [1] and plenty of papers including reviews [2,3] on chiral catalysts for the reaction have since appeared. This chapter describes new examples of catalytic enantioselec-tive allylation of carbonyl compounds with allylmetals in the presence of a catalytic amount of chiral Lewis acid or chiral Lewis base (Scheme 1). Compounds 1-36 [4-49] shown in Fig. 1 are the chiral catalysts reported since 1998, which have been used in the asymmetric allylation or propargylation of carbonyl compounds. Chiral compounds 37-40 [50-53], which have been utilized in the stoichiometric version, are also candidates for the chiral catalyst (Fig. 2). [Pg.113]

Referring to a mechanistic classification of organocatalysts (Seayad and List 2005), currently the two most prominent classes are Brpnsted acid catalysts and Lewis base catalysts. Within the latter class chiral secondary amines (enamine, iminium, dienamine activation for a short review please refer to List 2006) play an important role and can be considered as—by now—already widely extended mimetics of type I aldolases, whereas acylation catalysts, for example, refer to hydrolases or peptidases (Spivey and McDaid 2007). Thiamine-dependent enzymes, a versatile class of C-C bond forming and destructing biocatalysts (Pohl et al. 2002) with their common catalytically active coenzyme thiamine (vitamin Bi), are understood to be the biomimetic roots ofcar-bene catalysis, a further class of nucleophilic, Lewis base catalysis with increasing importance in the last 5 years. [Pg.184]

In recent years the synthetic potential and mechanistic aspects of asymmetric catalysis with chiral Lewis base have been investigated. Aldol addition reactions between trichlorosilyl enolates with aldehydes have been also intensively studied. Now, full investigations of the trichlorosilyl enolates derived from achiral and chiral methyl ketones, in both uncatalysed and catalysed reactions with chiral and achiral aldehyde acceptors have been reported. The aldol addition is dramatically accelerated by the addition of chiral phosphoramides, particularly (137) and proceed with good to high enantioselectivity with achiral enolates and aldehydes (Scheme 34). ... [Pg.130]

Denmark, S. E., Stavenger, R. A. Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases. Acc. Chem. Res. 2000, 33, 432-440. [Pg.534]

The observed activation of allyltrihalosilanes with fluoride ion and DMF and the proposition that these agents are bound to the silicon in the stereochemistry-determining transition structures clearly suggested the use of chiral Lewis bases for asymmetric catalysis. The use of chiral Lewis bases as promoters for the asymmetric allylation and 2-butenylation of aldehydes was first demonstrated by Denmark in 1994 (Scheme 10-31) [55]. In these reactions, the use of a chiral phos-phoramide promoter 74 provides the homoallylic alcohols in high yield, albeit modest enantioselectivity. For example, the ( )-71 and benzaldehyde affords the anti homoallylic alcohol 75 (98/2 antUsyn) in 66% ee. The sense of relative stereoinduction clearly supports the intermediacy of a hexacoordinate silicon species. The stereochemical outcome at the hydroxy center is also consistent with a cyclic transition structure. [Pg.323]

This concept of Lewis base catalysis has been widely developed by Denmark and coworkers in the asymmetric aldol additions of trichlorosilyl enolates on aldehydes. These reactions were shown to be highly susceptible to acceleration by catalytic quantities of chiral phosphoramides [69-77]. In particular, a phos-phoramide derived from (S,S)-stilbenediamine was remarkably effective not only in accelerating the reaction but also in modulating the diastereoselectivity and in providing the aldol addition products in good to excellent enantioselec-tivity. For example, trichlorosilyl enolate 61 reacts with benzaldehyde in very high enantio- and diastereoselectivity with 10 mol% of phosphoramide 62 in favor of the anti diastereomer (antifsyn 60/1). The catalyzed aldol reaction depends on the bulkiness and loading of the catalyst. On the other hand, the hindered phosphoramide (S,S)-63 afforded the syn aldol product in excellent diastereoselectivity (anti syn 1/97) but with modest enantioselectivity. [Pg.102]

The first example of chiral Lewis base-catalyzed allylation of carbonyl compounds was shown by Denmark et al. [35]. They surveyed a variety of achiral and chiral Lewis bases as stoichiometric reagents to promote the addition of al-lyltrichlorosilane to benzaldehyde and found that the chiral phosphoramide 14 was a superior chiral promoter. When crotyltrichlorosilane was employed, the diastereoselectivity anti/syn) of the product was dependent on the geometry of the crotylsilane. Based on the stereochemical outcome, the reaction was proposed to proceed via closed transition structures involving hexacoordinate siH-conates. The potential for catalysis was proved using a 25 mol % of 14 at -78 °C and a moderate enantiomeric excess was obtained (Scheme 13). [Pg.923]

In the preceding examples, the asymmetric catalyst is a Lewis acid and hence the catalytic processes reported so far involve electrophilic activation by a metal-centred chiral Lewis acid. There is another strategy, although less explored, which consists of designing chiral Lewis bases for nucleophilic catalysis. It is well known that Lewis bases such as nitrogen heterocycles and tertiary phosphines and amines catalyse a variety of important chemical processes. For instance 4-(dimethylamino)pyridine (DMAP) catalyses the acylation of alcohols by anhydrides the mechanism by which DMAP accelerates this process provides an instmctive illustration of how nucleophiles can... [Pg.91]

While the alcoholysis of anhydrides outlined above presumably proceeds via non-covalent catalysis, a range of chiral Lewis bases have been used for the desymmetrization of alcohol substrates using covalent strategies. As representative examples of this process, Birman utilized the isothiourea BTM 149 in an asymmetric synthesis of (—)-lobeline via desymmetrization of lobelanidine 167... [Pg.2928]

Scheme 7.17 Domino acylqtanation reaction catalysed by Lewis base catalysis and chiral titanium catalysis. Scheme 7.17 Domino acylqtanation reaction catalysed by Lewis base catalysis and chiral titanium catalysis.
Thus in the aldol addition, just as in the case of epoxide-opening reactions, the chloride ion, formed as a necessary consequence of the mechanism of Lewis base catalysis with chlorosilanes, is not innocuous. In fact, it is a competent nucleophile that can attack an aldehyde or an epoxide activated by the Lewis base-coordinated silicenium cation in an intermolecular fashion. The desire to understand these two seemingly inconsistent results obtained in our study of the Lewis base-catalyzed reactions of trichlorosilanes presented an opportunity for the development of novel catalytic processes. For example, if a chloride ion can capture these activated electrophiles, could other exogenous nucleophiles be employed to intercept these reactive intermediates If so, a wide variety of bond-forming processes mediated by the phosphoramide-bound chiral Lewis acid [LB SiCls]" would be feasible. At this point it remained unclear if (1) an exogenous nucleophile could compete with the ion-paired chloride and (2) what kinds of nucleophiles could be compatible with the reaction conditions. [Pg.60]


See other pages where Chiral Lewis Base Catalysis is mentioned: [Pg.395]    [Pg.393]    [Pg.55]    [Pg.395]    [Pg.393]    [Pg.55]    [Pg.315]    [Pg.384]    [Pg.5]    [Pg.232]    [Pg.2]    [Pg.862]    [Pg.158]    [Pg.7]    [Pg.2]    [Pg.206]    [Pg.15]    [Pg.2921]    [Pg.2923]    [Pg.406]    [Pg.112]    [Pg.16]    [Pg.58]    [Pg.68]   


SEARCH



Base catalysis

Chiral Bronsted Base-Lewis Acid Bifunctional Catalysis

Chiral Lewis bases

Lewis catalysis

Lewis chiral

Lewis-base catalysis

© 2024 chempedia.info