Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine base-chiral Lewis acid

As for the chiral ytterbium and scandium catalysts, the following structures were postulated. The unique structure shown in scheme 13 was indicated by 13C NMR and IR spectra. The most characteristic point of the catalysts was the existence of hydrogen bonds between the phenolic hydrogens of (R)-binaphthol and the nitrogens of the tertiary amines. The 13 C NMR spectra indicated these interactions, and the existence of the hydrogen bonds was confirmed by the IR spectra (Fritsch and Zundel 1981). The coordination form of these catalysts may be similar to that of the lanthanide(III)-water or -alcohol complex (for a review see Hart 1987). It is noted that the structure is quite different from those of conventional chiral Lewis acids based on aluminum (Maruoka and Yamamoto 1989, Bao et al. 1993), boron (Hattori and Yamamoto 1992), or titanium... [Pg.359]

In the preceding examples, the asymmetric catalyst is a Lewis acid and hence the catalytic processes reported so far involve electrophilic activation by a metal-centred chiral Lewis acid. There is another strategy, although less explored, which consists of designing chiral Lewis bases for nucleophilic catalysis. It is well known that Lewis bases such as nitrogen heterocycles and tertiary phosphines and amines catalyse a variety of important chemical processes. For instance 4-(dimethylamino)pyridine (DMAP) catalyses the acylation of alcohols by anhydrides the mechanism by which DMAP accelerates this process provides an instmctive illustration of how nucleophiles can... [Pg.91]

The Catalysis Concept of Iminium Activation In 2000, the MacMillan laboratory disclosed a new strategy for asymmetric synthesis based on the capacity of chiral amines to function as enantioselective catalysts for a range of transformations that traditionally use Lewis acids. This catalytic concept was founded on the mechanistic postulate that the reversible formation of iminium ions from a,p-unsaturated aldehydes and amines [Eq. (11.10)] might emulate the equilibrium dynamics and 7i-orbital electronics that are inherent to Lewis acid catalysis [i.e., lowest unoccupied molecular orbital (LUMO)-lowering activation] [Eq. (11.9)] ... [Pg.319]

Dialkylzincs are much less reactive than phenyl or alkynylzincs. In 2002, Kozlowski et al. developed a chiral salen-based catalyst 62 that can promote the diethylzinc addition to a-ketoesters in high yield, [Eq. (13.38)]. In their catalysis, titanium acts as a Lewis acid, and amine nitrogen acts as a Lewis base (63). The enantioselectivity was up to 78% ee ... [Pg.403]

It should be noted that not only the Lewis base but also typical Lewis acid roles can be emulated by organocatalytic systems. The proton is arguably the most common Lewis acid found in Nature, and these exist in two forms classified by the nature of the hydrogen bond polar covalent (RX-H) and polar ionic (RX+H-Y ). In the former case, in asymmetric transformations the chiral information is dictated by the chiral anion, whilst in the latter case the anion is non-chiral and the enantioselectivity is introduced by a chiral ligand (usually an amine base), which complexates the proton. This activation is discussed more extensively in Chapter 7. [Pg.7]

Asymmetric organocatalytic Morita-Baylis-Hillman reactions offer synthetically viable alternatives to metal-complex-mediated reactions. The reaction is best mediated with a combination of nucleophilic tertiary amine/phosphine catalysts, and mild Bronsted acid co-catalysts usually, bifunctional chiral catalysts having both nucleophilic Lewis base and Bronsted acid site were seen to be the most efficient. Although many important factors governing the reactions were identified, our present understanding of the basic factors, and the control of reactivity and selectivity remains incomplete. Whilst substrate dependency is still considered to be an important issue, an increasing number of transformations are reaching the standards of current asymmetric reactions. [Pg.183]

The most commonly used type of catalyst is a relatively small, bifunctional molecule that contains both a Lewis base and a Bronsted acid center, the catalytic properties being based on the activation of both the donor and the acceptor of the substrates. The majority of organocatalysts are chiral amines, e.g. amino acids or peptides. The acceleration of the reaction is either based on a charge-activated reaction (formation of an imminium ion 4), or involves the generalized enamine catalytic cycle (formation of an enamine 5). In an imminium ion, the electrophilicity compared to a keton or an oxo-Michael system is increased. If the imminium ion is deprotonated to form an enamine species, the nucleophilicity of the a-carbon is increased by the electron-donating properties of the nitrogen. ... [Pg.60]

It is interesting that the condensation between electron-rich phenol, amine, and a chiral a -A, A -dibenzylamino aldehyde has been reported to be temperature sensitive, with high syn selectivity at high reaction temperatures while high anti selectivity is observed at low reaction temperatures. Similar to the Aldol Condensation, the Mannich reaction can be promoted or catalyzed by either acid or base. Furthermore, different protic acids or Lewis acid alone or in combination with a different chiral ligand or auxiliary group is used to enhance the stereoselectivity of the Mannich reaction, such as proline, (,S )-amino sulfonamide, BINOL phosphate," At-spiro chiral quaternary ammonium bromide, and dodecylbenzenesulfonic acid" as well as Lewis acids, such as Cu(OAc)2, CuC104, " Cu(OTf)2-chiral diamine complexes,... [Pg.1821]


See other pages where Amine base-chiral Lewis acid is mentioned: [Pg.141]    [Pg.141]    [Pg.285]    [Pg.84]    [Pg.265]    [Pg.245]    [Pg.290]    [Pg.893]    [Pg.289]    [Pg.241]    [Pg.891]    [Pg.214]    [Pg.16]    [Pg.203]    [Pg.44]    [Pg.250]    [Pg.175]    [Pg.327]    [Pg.1219]    [Pg.20]    [Pg.205]    [Pg.218]    [Pg.75]    [Pg.569]    [Pg.569]    [Pg.131]    [Pg.155]    [Pg.77]    [Pg.134]    [Pg.445]    [Pg.320]    [Pg.320]    [Pg.426]    [Pg.446]    [Pg.350]    [Pg.205]    [Pg.218]    [Pg.492]    [Pg.1923]    [Pg.11]    [Pg.712]    [Pg.139]    [Pg.712]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Amine base

Amines Lewis bases

Amines chirality

Chiral Lewis acids

Chiral Lewis bases

Chiral acid/base

Chiral acids

Chiral aminals

Chiral amines

Lewis Acid-Base

Lewis chiral

© 2024 chempedia.info