Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral cholesteric phase

P-chiral dibenzophosphole oxide (52a) (Scheme 14) shows liquid crystalline behaviour [52], a property that is of interest in the area of electro-optical displays [53]. Chiral resolution of (52a) was achieved by column chromatographic separation of the diastereoisomers obtained following coordination of the o -benzophosphole (52b) to chiral cyclometallated palladium(II) complexes [52]. Notably, the presence of a stereogenic P-centre is sufficient to generate a chiral cholesteric phase. [Pg.143]

When the mesogenic compounds are chiral (or when chiral molecules are added as dopants) chiral mesophases can be produced, characterized by helical ordering of the constituent molecules in the mesophase. The chiral nematic phase is also called cholesteric, taken from its first observation in a cholesteryl derivative more than one century ago. These chiral structures have reduced symmetry, which can lead to a variety of interesting physical properties such as thermocromism, ferroelectricity, and so on. [Pg.359]

The introduction of a second chiral atom in the system leads to a reduction in the mesogenic properties and only a monotropic chiral nematic transition is observed for compound 23. However, when this compound is cooled down from the isotropic liquid state at a cooling rate of 0.5 °Cmin , very unusual blue phases BP-III, BL-II and BP-I are observed in the range 103-88 °C. Blue phases usually require pitch values below 500 nm. Hence the pitch value of the cholesteric phase for 23 must be very short, suggesting that the packing of two chiral carbons forces a faster helical shift for successive molecules packed along the perpendicular to the director. [Pg.377]

Several 4-(3-alkyl-2-isoxazolin-5-yl)phenol derivatives that possess liquid crystal properties have also been obtained (533-535). In particular, target compounds such as 463 (R = pentyl, nonyl) have been prepared by the reaction of 4-acetoxystyrene with the nitrile oxide derived from hexanal oxime, followed by alkaline hydrolysis of the acetate and esterification (535). A homologous series of 3-[4-alkyloxyphenyl]-5-[3,4-methylenedioxybenzyl]-2-isoxazolines, having chiral properties has been synthesized by the reaction of nitrile oxides, from the dehydrogenation of 4-alkyloxybenzaldoximes. These compounds exhibit cholesteric phase or chiral nematic phase (N ), smectic A (S4), and chiral smectic phases (Sc ), some at or just above room temperature (536). [Pg.107]

The mixing of nematogenic compounds with chiral solutes has been shown to lead to cholesteric phases without any chemical interactions.147 Milhaud and Michels describe the interactions of multilamellar vesicles formed from dilauryl-phosphotidylcholine (DLPC) with chiral polyene antibiotics amphotericin B (amB) and nystatin (Ny).148 Even at low concentrations of antibiotic (molar ratio of DLPC to antibiotic >130) twisted ribbons are seen to form just as the CD signals start to strengthen. The results support the concept that chiral solutes can induce chiral order in these lyotropic liquid crystalline systems and are consistent with the observations for thermotropic liquid crystal systems. Clearly the lipid membrane can be chirally influenced by the addition of appropriate solutes. [Pg.331]

A very different model of tubules with tilt variations was developed by Selinger et al.132,186 Instead of thermal fluctuations, these authors consider the possibility of systematic modulations in the molecular tilt direction. The concept of systematic modulations in tubules is motivated by modulated structures in chiral liquid crystals. Bulk chiral liquid crystals form cholesteric phases, with a helical twist in the molecular director, and thin films of chiral smectic-C liquid crystals form striped phases, with periodic arrays of defect lines.176 To determine whether tubules can form analogous structures, these authors generalize the free-energy of Eq. (5) to consider the expression... [Pg.354]

Reinitzer discovered liquid crystallinity in 1888 the so-called fourth state of matter.4 Liquid crystalline molecules combine the properties of mobility of liquids and orientational order of crystals. This phenomenon results from the anisotropy in the molecules from which the liquid crystals are built. Different factors may govern this anisotropy, for example, the presence of polar and apolar parts in the molecule, the fact that it contains flexible and rigid parts, or often a combination of both. Liquid crystals may be thermotropic, being a state of matter in between the solid and the liquid phase, or they may be lyotropic, that is, ordering induced by the solvent. In the latter case the solvent usually solvates a certain part of the molecule while the other part of the molecule helps induce aggregation, leading to mesoscopic assemblies. The first thermotropic mesophase discovered was a chiral nematic or cholesteric phase (N )4 named after the fact that it was observed in a cholesterol derivative. In hindsight, one can conclude that this was not the simplest mesophase possible. In fact, this mesophase is chiral, since the molecules are ordered in... [Pg.374]

Thermotropic cholesterics have several practical applications, some of which are very widespread. Most of the liquid crystal displays produced use either the twisted nematic (see Figure 7.3) or the supertwisted nematic electrooptical effects.6 The liquid crystal materials used in these cells contain a chiral component (effectively a cholesteric phase) which determines the twisting direction. Cholesteric LCs can also be used for storage displays utilizing the dynamic scattering mode.7 Short-pitch cholesterics with temperature-dependent selective reflection in the visible region show different colors at different temperatures and are used for popular digital thermometers.8... [Pg.428]

Several natural10 and synthetic (e.g., polyisocyanates11) polymers form lyotropic cholesterics with the appropriate solvent also micellar systems formed by amphiphilic molecules and water, if chirality is introduced by either using a chiral amphiphile or adding a chiral dopant, can give cholesteric phases.12... [Pg.430]

The main factor in determining the handedness of the cholesterics induced by bridged 1,1 -binaphtliyls is the helicity (P or M) of the solute, and this observation is the basis of many configurational studies of chiral binaphthyls. All the homochiral (aP)-binaphthyls 15-19 have an M helicity of the core, and all induce, in biphenyl nematics, M cholesterics.65,75 By systematic structural variations of the covalent bridge, it is possible to obtain I J -binaphthalenes with dihedral angles ranging from 60° to 96° (see series 20-24) the handedness of the cholesteric phase always matches the helicity... [Pg.447]

Another mechanism of chiral amplification that extends over an even larger scale has been reported by Huck et al. [119] The molecule 12-(9 H-thioxantbene-9 -yli-dene-12H-benzo[a]xanthene (Fig. 11.6), which has no chiral center, nevertheless exists, like the helicenes, in two chiral forms defined by their enantiomeric configurations. Consistent with the discussion in Section 11.2.3, a small net handedness (ca. 0.7 %) could be induced in racemic solutions of this molecule by use of ultraviolet CPL. However, introducing 20 wt% of this molecule, which contained a 1.5% chiral excess of one roto-enantiomer, into a nematic phase of liquid crystals produced macroscopic (100 pm) regions of a chiral cholesteric liquid crystal phase. The... [Pg.192]

The cholesteric phase in hquid crystals is analogous to the nematic phase but it is formed by materials that contain a chiral centre, initially derivatives of cholesterol (5.3), hence the name cholesteric LCs. Since synthetic chiral molecules can also be used on their own or as dopants for nematic LCs, e.g. (5.4), chiral nematic is probably a more appropriate term for these materials. [Pg.312]

The classical cholesteric phase materials show only a weak anisotropic interaction with electric fields and hence are of limited use in electro-optical response applications. Cholesteric phases for these outlets are consequently produced by adding chiral dopants to nematic liquid crystals. [Pg.314]

Cholesteric - the liquid crystal phase formed by molecules with a chiral centre (also called the chiral nematic phase). [Pg.387]

Research Focus Method for preparing polymerizable chiral intermediates containing optically active isosorbide to prepare twisted nematic or cholesteric phases. [Pg.91]

Obviously, chirality is an essential property in molecular chemistry, and knots are exciting systems in this context. With a touch of fantasy, it could be conceived that some of the chemical processes for which chirality is essential (enan-tioselection of substrates, asymmetric induction and catalysis, cholesteric phases, and ferroelectric liquid crystals molecular materials for non linear optics...) could one day use enantiomerically pure knots. [Pg.139]

The realization of nematic side chain polymers implies the possibility of the existence of cholesteric side chain polymers, presuming the mesogenic molecules, which are linked to the backbone, are chiral. For these polymers it is of interest, whether the polymer fixation influences the helical twist and therefore the optical properties of the cholesteric phase. This will be discussed in 2.3.2.2. [Pg.135]

Another possibility to obtain cholesteric phases is well established for l-l.c. s. Nematic phases can be converted into cholesteric phases by the addition of chiral molecules, which must not necessarily have a mesogenic chemical constitution (induced cholesteric phases). With increasing amount of the chiral derivative an increasing helical twist is induced. This principle can also be applied to obtain cholesteric polymers 81 S3) in form of... [Pg.135]

Actually, these considerations are confirmed by experiments 82). The systems investigated are shown in Table 8, No. 4, which are induced cholesteric polymer systems. The nematogenic host molecules of benzoic acid phenyl esters are linked via spacers of different length m (m = 3, 4, 5, 6) to the polymer backbone. The polymers are converted to polymers having a cholesteric phase by the chiral cholesteryl derivative, which is also linked to the polymer backbone (copolymer). [Pg.141]

Fig. 28. Inverse wavelength ,R 1 versus concentration in mole % of the chiral comonomer for induced cholesteric phases No. 4 of Table 8 at T = 0.95. Fig. 28. Inverse wavelength ,R 1 versus concentration in mole % of the chiral comonomer for induced cholesteric phases No. 4 of Table 8 at T = 0.95.
Fig. 29. Inverse wavelength of reflection LR 1 vs. concentration in mole % of the chiral component for induced cholesteric phases = copolymer No. 5, Table 8 O = monomer-polymer mixture... Fig. 29. Inverse wavelength of reflection LR 1 vs. concentration in mole % of the chiral component for induced cholesteric phases = copolymer No. 5, Table 8 O = monomer-polymer mixture...
These experiments clearly confirm the theoretical concept of the helical twist of cholesteric phases developed by Goossens and Vertogen 79,86), which is based on the hindered rotation of chiral molecules around their long molecular axis and the introduction of the order parameter D. Furthermore they support the concept of the flexible spacer, described in Chap. 2.1. [Pg.144]


See other pages where Chiral cholesteric phase is mentioned: [Pg.1076]    [Pg.2]    [Pg.1076]    [Pg.2]    [Pg.2544]    [Pg.1030]    [Pg.148]    [Pg.348]    [Pg.380]    [Pg.427]    [Pg.431]    [Pg.439]    [Pg.441]    [Pg.69]    [Pg.129]    [Pg.193]    [Pg.188]    [Pg.30]    [Pg.211]    [Pg.212]    [Pg.405]    [Pg.421]    [Pg.97]    [Pg.19]    [Pg.124]    [Pg.135]    [Pg.141]   
See also in sourсe #XX -- [ Pg.251 , Pg.253 , Pg.254 , Pg.255 , Pg.290 ]




SEARCH



Chiral phases

Chirality/Chiral phases

Cholesteric

Cholesteric phases

Cholesterics

Phases chirality

© 2024 chempedia.info