Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption nature

As it is known, Sn02 gas response has the chemisorption nature independently from the type of detected gas. However, we have found out that film thickness had different influence on gas response to ozone and H2 (Fig. 2b). It testifies that different elements of gas sensing matrix control the gas response during O3 and H2 detection. [Pg.551]

For oxide/solution interfaces, a pronounced correlation was revealed between the type of organic compound and their adsorption [107]. Such selectivity was noted for adsorption on metals and can point to the chemisorption nature of the metal-adsorbate interaction [108]. [Pg.346]

As an example, the system consisting of metal oxide particles in solutions of Co ions is described here [7]. Figure 2 gives the adsorption densities of cobalt(II) ions on monodispersed magnetite (Fe304> particles as a function of the pH, while Figure 3 shows the temperature effect on the same system. The latter clearly indicates the chemisorption nature of the processes involved. [Pg.849]

As is made evident in the next section, there is no sharp dividing line between these two types of adsorption, although the extremes are easily distinguishable. It is true that most of the experimental work has tended to cluster at these extremes, but this is more a reflection of practical interests and of human nature than of anything else. At any rate, although this chapter is ostensibly devoted to physical adsorption, much of the material can be applied to chemisorption as well. For the moment, we do assume that the adsorption process is reversible in the sense that equilibrium is reached and that on desorption the adsorbate is recovered unchanged. [Pg.601]

It was noted in Section XVII-1 that chemisorption may become slow at low temperatures so that even though it is favored thermodynamically, the only process actually observed may be that of physical adsorption. Such slowness implies an activation energy for chemisorption, and the nature of this effect has been much discussed. [Pg.703]

In general, it seems more reasonable to suppose that in chemisorption specific sites are involved and that therefore definite potential barriers to lateral motion should be present. The adsorption should therefore obey the statistical thermodynamics of a localized state. On the other hand, the kinetics of adsorption and of catalytic processes will depend greatly on the frequency and nature of such surface jumps as do occur. A film can be fairly mobile in this kinetic sense and yet not be expected to show any significant deviation from the configurational entropy of a localized state. [Pg.709]

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

In such an experiment the material actually adsorbed by the solid (the adsorbent) is termed the adsorbate, in contradistinction to the adsorptive which is the the general term for the material in the gas phase which is capable of being adsorbed. The adsorption is brought about by the forces acting between the solid and the molecules of the gas. These forces are of two main kinds—physical and chemical—and they give rise to physical (or van der Waals ) adsorption, and chemisorption respectively. The nature of the physical forces will be dealt with in the next section meanwhile it is convenient to note that they are the same in nature as the van der Waals forces which bring about the condensation of a vapour to the liquid state. [Pg.2]

The incorporation of the new material without any increase in the overall length of the book has been achieved in part by extensive re-writing, with the compression of earlier material, and in part by restricting the scope to the physical adsorption of gases (apart from a section on mercury porosimetry). The topics of chemisorption and adsorption from solution, both of which were dealt with in some detail in the first edition, have been omitted chemisorption processes are obviously dependent on the chemical nature of the surface and therefore cannot be relied upon for the determination of the total surface area and methods based on adsorption from solution have not been developed, as was once hoped, into routine procedures for surface area determination. Likewise omitted, on grounds of... [Pg.290]

Forces of Adsorption. Adsorption may be classified as chemisorption or physical adsorption, depending on the nature of the surface forces. In physical adsorption the forces are relatively weak, involving mainly van der Waals (induced dipole—induced dipole) interactions, supplemented in many cases by electrostatic contributions from field gradient—dipole or —quadmpole interactions. By contrast, in chemisorption there is significant electron transfer, equivalent to the formation of a chemical bond between the sorbate and the soHd surface. Such interactions are both stronger and more specific than the forces of physical adsorption and are obviously limited to monolayer coverage. The differences in the general features of physical and chemisorption systems (Table 1) can be understood on the basis of this difference in the nature of the surface forces. [Pg.251]

Adsorption and Desorption Adsorbents may be used to recover solutes from supercritical fluid extracts for example, activated carbon and polymeric sorbents may be used to recover caffeine from CO9. This approach may be used to improve the selectivity of a supercritical fluid extraction process. SCF extraction may be used to regenerate adsorbents such as activated carbon and to remove contaminants from soil. In many cases the chemisorption is sufficiently strong that regeneration with CO9 is limited, even if the pure solute is quite soluble in CO9. In some cases a cosolvent can be added to the SCF to displace the sorbate from the sorbent. Another approach is to use water at elevated or even supercritical temperatures to facilitate desorption. Many of the principles for desorption are also relevant to extraction of substances from other substrates such as natural products and polymers. [Pg.2003]

Kinds of Catalyzed Organic Reactions A fundamental classification of organic reactions is possible on the basis of the lands of bonds that are formed or destroyed and the natures of eliminations, substitutions, and additions of groups. Here a more pragmatic hst of 20 commercially important lands or classes of reactions will be discussed. In all instances of sohd-catalyzed reactions, chemisorption is a primary step. Often molecules are dissociated on chemisorption into... [Pg.2094]

The catalytic reaction can be subdivided into pore diffusion and chemisorption of reactants, chemical surface reaction, and desorption and pore diffusion of products, the number of steps depending upon the nature of the catalyst and the catalytic reaction. [Pg.82]

The key of the promotional action is the effect of electropositive and electronegative promoters on the chemisorptive bond of the reactants, intermediates and, sometimes, products of catalytic reactions. Despite the polymorphic and frequently complex nature of this effect, there are two simple rules always obeyed which can guide us in the phenomenological survey which follows in this chapter. [Pg.35]

The chemisorptive bond is a chemical bond. The nature of this bond can be covalent or can have a strong ionic character. The formation of the chemisorptive bond in general involves either donation of electrons from the adsorbate to the metal (donation) or donation of electrons from the metal to the adsorbate (backdonation).2 In the former case the adsorbate is termed electron donor, in the latter case it is termed electron acceptor.3 In many cases both donation and backdonation of electrons is involved in chemisorptive bond formation and the adsorbate behaves both as an electron acceptor and as an electron donor. A typical example is the chemisorption of CO on transition metals where, according to the model first described by Blyholder,4 the chemisorptive bond formation involves both donation of electrons from the 7t orbitals of CO to the metal and backdonation of electrons from the metal to the antibonding n orbitals of CO. [Pg.279]

The Characterization and Properties of Small Metal Particles. Y. Takasu and A. M. Bradshaw, Surf. Defect. Prop. Solids p. 401 1978). 2. Cluster Model Theory. R. P. Messmer, in "The Nature of the Chemisorption Bond G. Ertl and T. Rhodin, eds. North-Holland Publ., Amsterdam, 1978. 3. Clusters and Surfaces. E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker, and W. R. Pretzer, Cornell National Science Center, Ithaca, New York, 1978. 4. Determination of the Properties of Single Atom and Multiple Atom Clusters. J. F. Hamilton, in "Chemical Experimentation Under Extreme Conditions (B. W. Rossiter, ed.) (Series, "Physical Methods of Organic Chemistry ), Wiley (Interscience), New York (1978). [Pg.130]

Entina VS, Petrii OA, Rysikova VT. 1967. On the nature of products of methanol chemisorption on Pt + Ru electrode surface. Elektrokhimiya 3 758-761. [Pg.456]

Lopes MIS, Beden B, Hahn F, Leger J-M, Lamy C. 1991. On the nature of the adsorbates resulting from the chemisorption of methanol at a platinum electrode in acid medium An EMIRS study. J Electroanal Chem 313 323-339. [Pg.459]

All major characteristics of chemisorption response of electrophysical parameters of semiconductor adsorbents such as sensitivity, selectivity, inertia, reversibility are naturally dependent both on the nature of adsorbent and on chemical activity of absorbate with respect to adsorbent chosen. [Pg.87]

In paper [141] it was shown that the change in electric conductivity in case of chemisorption of various alkyl radicals on the same oxide is notably dependent on chemical nature of free radicals. In this case the arrangement of simplest radicals in the order of decreasing degree of effect of electric conductivity of ZnO given in [132, 186] will be the following ... [Pg.88]


See other pages where Chemisorption nature is mentioned: [Pg.317]    [Pg.535]    [Pg.297]    [Pg.317]    [Pg.535]    [Pg.297]    [Pg.406]    [Pg.600]    [Pg.685]    [Pg.2225]    [Pg.279]    [Pg.149]    [Pg.411]    [Pg.12]    [Pg.115]    [Pg.464]    [Pg.1175]    [Pg.126]    [Pg.271]    [Pg.180]    [Pg.166]    [Pg.369]    [Pg.250]    [Pg.261]    [Pg.74]    [Pg.117]    [Pg.125]    [Pg.6]    [Pg.12]    [Pg.14]    [Pg.24]    [Pg.89]   
See also in sourсe #XX -- [ Pg.288 , Pg.289 , Pg.290 ]




SEARCH



Oxygen chemisorption bond, nature

The Nature of Weak Chemisorption on Pd

© 2024 chempedia.info