Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemically modified interfaces

Electroanalytical strategies and chemically modified interfaces Interfacial Design and Chemical Sensing ed T E Mallouk and D J Harrison (Washington, DC American Chemical Society) pp 231-43... [Pg.221]

A discussion of the charge transfer reaction on the polymer-modified electrode should consider not only the interaction of the mediator with the electrode and a solution species (as with chemically modified electrodes), but also the transport processes across the film. Let us assume that a solution species S reacts with the mediator Red/Ox couple as depicted in Fig. 5.32. Besides the simple charge transfer reaction with the mediator at the interface film/solution, we have also to include diffusion of species S in the polymer film (the diffusion coefficient DSp, which is usually much lower than in solution), and also charge propagation via immobilized redox centres in the film. This can formally be described by a diffusion coefficient Dp which is dependent on the concentration of the redox sites and their mutual distance (cf. Eq. (2.6.33). [Pg.332]

Figure 3.12 — Interfacing of a fermenter to an FI system. The fermenter medium is continuously recycled by a pump to the filter unit, from which the filtrate is guided to a small reservoir (500 /xL). The sample solution is aspirated through a dialyser, the acceptor stream of which is fed to the injector of the FIA system. The analyte content is assayed amperometrically by using the glucose sensor incorporating the enzyme-containing chemically modified electrode. (Reproduced from [86] with permission of Elsevier Science Publishers). Figure 3.12 — Interfacing of a fermenter to an FI system. The fermenter medium is continuously recycled by a pump to the filter unit, from which the filtrate is guided to a small reservoir (500 /xL). The sample solution is aspirated through a dialyser, the acceptor stream of which is fed to the injector of the FIA system. The analyte content is assayed amperometrically by using the glucose sensor incorporating the enzyme-containing chemically modified electrode. (Reproduced from [86] with permission of Elsevier Science Publishers).
Active anticorrosive pigments inhibit one or both of the two electrochemical partial reactions. The protective action is located at the interface between the substrate and the primer. Water that has diffused into the binder dissolves soluble anticorrosive components (e.g., phosphate, borate, or organic anions) out of the pigments and transports them to the metal surface where they react and stop corrosion. The oxide film already present on the iron is thereby strengthened and sometimes chemically modified. Any damaged areas are repaired with the aid of the active substance. Inhibition by formation of a protective film is the most important mode of action of the commoner anticorrosive pigments. [Pg.193]

Chemically modified silica fillers with grafted methyl groups or methyl and silicon hydride groups, influenced the micro- and macrostructures of various copolymers. Changes in cross-linking, orderliness, crystallinity, microtacticity and conformation of macromolecules have been detected in the presence of fillers. Surface functionality of the silica filler determines the disposition of macromolecular chains at the interface. [Pg.110]

Sol-gel matrices can also provide a chemical surrounding that favors enzymatic reactions. Lipases act on ester bonds and are able to hydrolyze fats and oils into fatty acids and glycerol. These are interphase-active enzymes with lipophilic domains and the catalytic times reaction occurs at the water-lipid interface. Entrapped lipases can be almost 100 times more active when a chemically modified silica matrix is used. The cohydrolysis of Si(OMe)4 and RSi(OMe)3 precursors provides alkyl groups that offer a lipophihc environment that can interact with the active site of Upases and increase their catalytic activity. Such entrapped lipases are now commercially available and offer new possibilities for organic syntheses, food industry, and oil processing. ... [Pg.4509]

An alternative (or just different) description of HPLC retention is based on consideration of the adsorption process instead of partitioning. Adsorption is a process of the analyte concentrational variation (positive or negative) at the interface as a result of the influence of the surface forces. Physical interface between contacting phases (solid adsorbent and liquid mobile phase) is not the same as its mathematical interpretation. The physical interface has certain thickness because the variation of the chemical potential can have very sharp change, but it could not have a break in its derivative at the transition point through the interface. The interface could be considered to have a thickness of one or two monomolecular layers, and in RPLC with chemically modified adsorbents the bonded layer is a monomolecular layer that is more correctly... [Pg.40]

Good consistency of the parameters derived from various experimental data is observed for rigid materials with regular pore geometry and sharp boundary between solid surface and pore space. The contrast between empty pores and silica is large both for X-rays and positrons. However, in the case of chemically modified silica this interface boundary is characterized by the presence of transition layer for which the structure and density is not satisfactory established. Thus, pore dimensions determined by using different techniques exhibit some discrepancy. [Pg.656]

S. J. Park and Y. S. Jang, Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI), J. Colloid Interface Sc/. 249 (2002) 458-463. [Pg.436]

To facilitate a self-contained description, we will start with well-established aspects related to the semiconductor energy band model and the electrostatics at semiconductor electrolyte interfaces in the dark . We shall then examine the processes of light absorption, electron-hole generation and charge separation at these interfaces. Finally, the steady-state and dynamic (i.e., transient or periodic) aspects of charge transfer will be considered. Nanocrystalline semiconductor films and size quantization are briefly discussed, as are issues related to electron transfer across chemically modified semiconductor electrolyte interfaces. [Pg.2653]

Charge Transfer Across Chemically Modified Semiconductor-Electrolyte Interfaces... [Pg.2709]


See other pages where Chemically modified interfaces is mentioned: [Pg.229]    [Pg.229]    [Pg.531]    [Pg.584]    [Pg.102]    [Pg.148]    [Pg.649]    [Pg.649]    [Pg.566]    [Pg.356]    [Pg.470]    [Pg.190]    [Pg.40]    [Pg.228]    [Pg.293]    [Pg.531]    [Pg.89]    [Pg.18]    [Pg.280]    [Pg.319]    [Pg.114]    [Pg.396]    [Pg.209]    [Pg.6]    [Pg.138]    [Pg.656]    [Pg.75]    [Pg.239]    [Pg.435]    [Pg.87]    [Pg.90]    [Pg.658]    [Pg.2709]    [Pg.2711]    [Pg.2715]    [Pg.187]    [Pg.239]    [Pg.137]   


SEARCH



Chemical modifiers

Chemically modified

Interface modifier

© 2024 chempedia.info