Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical transformations, surface

Chemical, or abiotic, transformations are an important fate of many pesticides. Such transformations are ubiquitous, occurring in either aqueous solution or sorbed to surfaces. Rates can vary dramatically depending on the reaction mechanism, chemical stmcture, and relative concentrations of such catalysts as protons, hydroxyl ions, transition metals, and clay particles. Chemical transformations can be genetically classified as hydrolytic, photolytic, or redox reactions (transfer of electrons). [Pg.218]

Finally, atmospheric chemical transformations are classified in terms of whether they occur as a gas (homogeneous), on a surface, or in a liquid droplet (heterogeneous). An example of the last is the oxidation of dissolved sulfur dioxide in a liquid droplet. Thus, chemical transformations can occur in the gas phase, forming secondary products such as NO2 and O3 in the liquid phase, such as SO2 oxidation in liquid droplets or water films and as gas-to-particle conversion, in which the oxidized product condenses to form an aerosol. [Pg.167]

From the study of the influencing of single reactions by products and by other added substances and from the analysis of mutual influencing of reactions in coupled systems, the following conclusions can be drawn concerning adsorption of the reaction components. (1) With the exception of crotyl alcohol on the platinum-iron-silica gel catalyst, all the substances present in the coupled system, i.e. reactants, intermediate products, and final products, always adsorbed on the same sites of the catalytic surface (competitive adsorption). This nonspecificity was established also in our other studies (see Section IV.F.2) and was stated also by, for example, Smith and Prater (32), (2) The adsorption of starting reactants and the desorption of the intermediate and final products appeared in our studies always as faster, relative to the rate of chemical transformations of adsorbed substances on the surface of the catalyst. [Pg.49]

Table 1 shows the kinetic data available for the (TMSjsSiH, which was chosen because the majority of radical reactions using silanes in organic synthesis deal with this particular silane (see Sections III and IV). Furthermore, the monohydride terminal surface of H-Si(lll) resembles (TMSjsSiH and shows similar reactivity for the organic modification of silicon surfaces (see Section V). Rate constants for the reaction of primary, secondary, and tertiary alkyl radicals with (TMSIsSiH are very similar in the range of temperatures that are useful for chemical transformations in the liquid phase. This is due to compensation of entropic and enthalpic effects through this series of alkyl radicals. Phenyl and fluorinated alkyl radicals show rate constants two to three orders of magnitude... [Pg.118]

Figure 1 Illustrates two general MOCVD reactor configurations, the horizontal reactor and the axlsymmetrlc vertical reactor. The reactant gas (ASH3, Ga(CH3)3 and Al( 013)3) enters cold and heats up as It fiows toward the substrate where a solid film of AlGaAs Is being deposited. The chemical transformations Involved In the deposition process may occur both In the gas phase and on the surface of the growing film. Figure 1 Illustrates two general MOCVD reactor configurations, the horizontal reactor and the axlsymmetrlc vertical reactor. The reactant gas (ASH3, Ga(CH3)3 and Al( 013)3) enters cold and heats up as It fiows toward the substrate where a solid film of AlGaAs Is being deposited. The chemical transformations Involved In the deposition process may occur both In the gas phase and on the surface of the growing film.
The majority of trichloroethylene present on soil surfaces will volatilize to the atmosphere or leach into the subsurface. Once trichloroethylene leaches into the soil, it appears not to become chemically transformed or undergo covalent bonding with soil components. When trichloroethylene was absorbed onto kaolinite and bentonite, the nuclear magnetic resonance (NMR) spectra showed no evidence of chemical reactions (Jurkiewicz and Maciel 1995). Because trichloroethylene is a dense nonaqueous phase liquid, it can move through the imsaturated zone into the saturated zone where it can displace soil pore water (Wershaw et al. 1994). [Pg.213]

Therefore, the interaction of the EEPs with the surface of sensors is a complex process that, being dependent on the nature of the surface and the nature of the active particle, results either in chemical transformation (chemisorption, for instance), or in transfer of excitation energy to a solid body, the processes that proceed at different velocities. [Pg.298]

Heterogeneous reactions facilitated by supported reagents on inorganic oxide surfaces have received attention in recent years, both in the laboratory as well as in industry. Although the first description of the surface-mediated chemical transformation dates back to 1924 [13], it was not until almost half a century later that the technique received extensive attention with the appearance of several reviews, books and account articles [14—22],... [Pg.181]

Conducting reactions in nanospace where the dimensions of the reaction vessel are comparable to those of the reactants provides a new tool that can be used to control the selectivity of chemical transformations.1 This dimensional aspect of nano-vessels has been referred to as shape selectivity.2 The effect of spatial confinement can potentially be exerted at all points on the reaction surface but its influence on three stationary points along the reaction coordinate (reactants, transition states, and products) deserve special attention.3,4 (1) Molecular sieving of the reactants, excluding substrates of the incorrect dimension from the reaction site can occur (reactant selectivity). (2) Enzyme-like size selection or shape stabilization of transition states can dramatically influence reaction pathways (transition state selectivity). (3) Finally, products can be selectively retained that are too large to be removed via the nano-vessel openings/pores (product selectivity). [Pg.225]

As a rule, simulations consider emissions of heavy metals from anthropogenic and natural sources, transport in the atmosphere and deposition to the underlying surface (Figure 6). It is assumed that lead and cadmium are transported in the atmosphere only as a part of aerosol particles. Besides, chemical transformations of these metals do not change removal properties of their particles-carriers. On the contrary, mercury enters the atmosphere in different physical and chemical forms and undergoes numerous transformations during its pathway in the atmosphere (Ilyn et al., 2002 2004 Ilyin and Travnikov, 2003). [Pg.364]

Steps (i) and (iv) are generally very fast and do not play any part in determination of rate of the reaction. The adsorption and desorption equilibria are easily attained. The concentration of reactant molecules on the surface is an important factor because the molecules which are adsorbed on the surface will undergo the chemical transformation. The concentration of the adsorbed molecules on the surface at any moment is proportional to the fraction of the surface (say 0) covered. Therefore, the rate of reaction will also then be proportional to the covered portion of the surface, i.e. [Pg.156]

What does the future hold With specific regard to 51, one may ask whether ligation of an oxygen triad to Li+ will be adequate to hold conformation while chemical transformations are performed on the opposite surface If not, can systematic dismantling of the ortho ester bridge provide opportunities for chemical change without incurring chair-to-chair interconversion Since no precedence exists in these areas, the future holds considerable excitement. [Pg.48]

Radionuelides can be also used to study the accumulation and degradation of organic pollutants. In our experiments we have followed the uptake and degradation of labelled TNT by wetland plants (Nepovim et al., 2005), and showed that about 63% of the localized in the roots of Ph. australis was bound (Fig. 6) and the remainder was acetone-extractable. An HPLC analysis of the acetone extract failed to detect any TNT, showing that all TNT had been chemically transformed. Thus TNT was not adsorbed on the root surface. In similar experiments performed in wheat (Triticum aestivum). Sens et al. (1999) found that 57% of the taken up was bound... [Pg.146]


See other pages where Chemical transformations, surface is mentioned: [Pg.378]    [Pg.378]    [Pg.378]    [Pg.378]    [Pg.268]    [Pg.33]    [Pg.470]    [Pg.542]    [Pg.1875]    [Pg.165]    [Pg.221]    [Pg.4]    [Pg.18]    [Pg.110]    [Pg.347]    [Pg.137]    [Pg.166]    [Pg.103]    [Pg.99]    [Pg.318]    [Pg.253]    [Pg.305]    [Pg.167]    [Pg.127]    [Pg.350]    [Pg.288]    [Pg.20]    [Pg.173]    [Pg.188]    [Pg.447]    [Pg.12]    [Pg.263]    [Pg.257]    [Pg.156]    [Pg.135]    [Pg.9]    [Pg.226]    [Pg.93]    [Pg.143]   


SEARCH



Chemical surface

Chemical transformation

© 2024 chempedia.info