Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical kinetics concentration, effect

One of the most difficult decisions that a textbook writer has to make is to select what material to cover and what topics to leave out. This is especially difficult in chemical reaction engineering because of the wide scope of the field and the diversity of topics that it covers. As the title indicates, this book focuses on the analysis and design of chemical reactors. The objective of the book is to present a comprehensive, unified methodology to analyze and design chemical reactors that overcomes the deficiencies of the current pedagogy. To concentrate on this objective, some topics that are commonly covered in chemical reaction engineering textbooks (chemical kinetics, catalysis, effect of diffusion, mass-transfer limitation, etc.) are... [Pg.484]

Notice that in the region of fast chemical reaction, the effectiveness factor becomes inversely proportional to the modulus h2. Since h2 is proportional to the square root of the external surface concentration, these two fundamental relations require that for second-order kinetics, the fraction of the catalyst surface that is effective will increase as one moves downstream in an isothermal packed bed reactor. [Pg.446]

This paper presents new data on dissolution kinetics. The effects of alkali concentration, size of the cation, and salt addition were studied. The influence of segmental mobility on dissolution was elucidated by measuring the temperature coefficients of the dissolution rates. Experiments were also carried out to study the relation between the chemical structure of a polymeric Inhibitor and Its effectiveness 1n retarding dissolution. Based on these results,... [Pg.364]

In chemical equilibria, the energy relations between the reactants and the products are governed by thermodynamics without concerning the intermediate states or time. In chemical kinetics, the time variable is introduced and rate of change of concentration of reactants or products with respect to time is followed. The chemical kinetics is thus, concerned with the quantitative determination of rate of chemical reactions and of the factors upon which the rates depend. With the knowledge of effect of various factors, such as concentration, pressure, temperature, medium, effect of catalyst etc., on reaction rate, one can consider an interpretation of the empirical laws in terms of reaction mechanism. Let us first define the terms such as rate, rate constant, order, molecularity etc. before going into detail. [Pg.1]

The short program Lorenz.m calculates the concentrations for A, B and C for the initial conditions. c0=[l l 20]. Figure 3-37 displays the trajectories in a fashion that is not common in chemical kinetics. It is a plot of the time evolution of the values of A vs. B vs. C (see also Figure 3-35). Most readers will recognise the characteristic butterfly shape of the trajectory. The important aspect is that, in contrast to Figure 3-35, the trajectory is different each time. This time, it is not the effect of numerical errors but an essential aspect of the outcome. Even if the starting values for A, B and C are away from the butterfly , the trajectory moves quickly into it it is attracted by it and thus the name, Lorenz attractor. [Pg.98]

The chapter starts with a brief review of thermodynamic principles as they apply to the concept of the chemical equilibrium. That section is followed by a short review of the use of statistical thermodynamics for the numerical calculation of thermodynamic equilibrium constants in terms of the chemical potential (often designated as (i). Lastly, this statistical mechanical development is applied to the calculation of isotope effects on equilibrium constants, and then extended to treat kinetic isotope effects using the transition state model. These applications will concentrate on equilibrium constants in the ideal gas phase with the molecules considered in the rigid rotor, harmonic oscillator approximation. [Pg.77]

Unfortunately, OH and O concentrations in flames are determined by detailed chemical kinetics and cannot be accurately predicted from simple equilibrium at the local temperature and stoichiometry. This is particularly true when active soot oxidation is occurring and the local temperature is decreasing with flame residence time [59], As a consequence, most attempts to model soot oxidation in flames have by necessity used a relation based on oxidation by 02 and then applied a correction factor to augment the rate to approximate the effect of oxidation by radicals. The two most commonly applied rate equations for soot oxidation by 02 are those developed by Lee el al. [61] and Nagle and Strickland-Constable [62],... [Pg.547]

A representation of all of the elementary reactions that lead to the overall chemical change being investigated. This representation would include a detailed analysis of the kinetics, thermodynamics, stereochemistry, solvent and electrostatic effects, and, when possible, the quantum mechanical considerations of the system under study. Among many items, this representation should be consistent with the reaction rate s dependence on concentration, the overall stoichiometry, the stereochemical course, presence and structure of intermediate, the structure of the transition state, effect of temperature and other variables, etc. See Chemical Kinetics... [Pg.612]

Studies of dmg absorption, distribution and elimination comprise what is referred to as pharmacokinetics. By contrast, the concentration of a pharmaceutical compound at the site(s) of action in relation to the magnitude of its effect(s) is referred to as pharmacodynamics. Both pharmacokinetics and pharmacodynamics have their roots in physiology, chemical kinetics, biochemistry, and pharmacology. They seek to provide a mathematical basis of the absorption, distribution, metabolisms, and... [Pg.119]

As ice crystals grow in the freezing system, the solutes are concentrated. In addition to increased ionic strength effects, the rates of some chemical reactions—particularly second order reactions—may be accelerated by freezing through this freeze-concentration effect. Examples include reduction of potassium ferricyanide by potassium cyanide (2), oxidation of ascorbic acid (3), and polypeptide synthesis (4). Kinetics of reactions in frozen systems has been reviewed by Pincock and Kiovsky (5). [Pg.265]

Fluorescence Correlation Spectroscopy and Fluorescence Burst Analysis. Several nanoscopic chemical imaging approaches work very well for measurements of chemical kinetics, interactions, and mobility in solution. Fluorescence correlation spectroscopy (FCS) measures the temporal fluctuations of fluorescent markers as molecules diffuse or flow in solution through a femtoliter focal volume.54 Their average diffusive dwell times reveal their diffusion coefficients, and additional faster fluctuations can reveal chemical reactions and their kinetics if the reaction provides fluorescence modulation. Cross-correlation of the fluorescence of two distinguishable fluorophore types can very effectively reveal chemical binding kinetics and equilibria at nanomolar concentrations. [Pg.90]

They may be obtained by means of the matrix IET but only together with the kernel E(f) = F(t) specified by its Laplace transformation (3.244), which is concentration-independent. However, from the more general point of view, Eqs. (3.707) are an implementation of the memory function formalism in chemical kinetics. The form of these equations shows the essentially non-Markovian character of the reversible reactions in solution the kernel holds the memory effect, and the convolution integrals entail the prehistoric evolution of the process. In the framework of ordinary chemical kinetics S(/j = d(t), so that the system (3.707) acquires the purely differential form. In fact, this is possible only in the limit when the reaction is entirely under kinetic control. [Pg.365]

Pharmacokinetics has been based on the concepts of classical chemical kinetics. However, the applicability of the rate equations used in chemical kinetics presupposes that the reactions are really reaction-limited. In other words, the typical time for the two chemical species to react when placed in close proximity (reaction time treac) is larger than the typical time needed for the two species to reach each other (diffusion time treaction space. When the condition treac > tdiff is met, then one can use the global concentrations of the reactant species in the medium to obtain the classical rate equations of chemical kinetics. This is so since the rate of the reaction is proportional to the global concentrations of the reactant species (law of mass action). The inequality freac > tdiff underlines the fact that the two reactant species have encountered each other more than one time previously in order to react effectively. [Pg.33]

Minor lipids can have a significant influence on the kinetics of crystallization of milk fat. The effects on the kinetics of crystallization processes should be separated from their influence on the final properties of the milk fat. The effects of minor lipids on the modification of milk fat properties are complex and are dependent on the type, chemical nature, concentration and structure of the minor lipids (Wright and Marangoni, 2002a Vanhoutte et al., 2002a). [Pg.312]


See other pages where Chemical kinetics concentration, effect is mentioned: [Pg.819]    [Pg.1052]    [Pg.639]    [Pg.659]    [Pg.383]    [Pg.590]    [Pg.43]    [Pg.315]    [Pg.129]    [Pg.371]    [Pg.483]    [Pg.84]    [Pg.10]    [Pg.52]    [Pg.177]    [Pg.306]    [Pg.169]    [Pg.139]    [Pg.149]    [Pg.360]    [Pg.371]    [Pg.472]    [Pg.178]    [Pg.611]    [Pg.342]    [Pg.58]    [Pg.328]    [Pg.87]    [Pg.443]    [Pg.397]    [Pg.126]    [Pg.7]    [Pg.8]    [Pg.131]   
See also in sourсe #XX -- [ Pg.928 , Pg.929 , Pg.930 ]




SEARCH



Chemical concentration

Chemical kinetics

Chemical kinetics concentration

Concentration kinetics

Kinetic Chemicals

© 2024 chempedia.info