Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equations mole ratio

Chemical Formulas Balancing Chemical Equations Mole Ratios... [Pg.101]

To solve the problem, you need to know how the unknown moles of hydrogen are related to the known moles of potassium. In Section 11.1, you learned to derive mole ratios from the balanced chemical equation. Mole ratios are used as conversion factors to convert the known number of moles of one substance to the unknown number of moles of another substance in the same reaction. Several mole ratios can be written from the equation, but how do you choose the correct one ... [Pg.373]

Why learn to write mole ratios They are the key to calculations that are based on chemical equations. Using a balanced chemical equation, mole ratios derived from the equation, and a given amount of one of the reactants or products, you can calculate the amount of any other participant in the reaction. [Pg.115]

According to the balanced chemical equation, the ratio of lithium nitride to water is 1/3. The ratio of lithium nitride to water, based on the mole amounts calculated, is 0.14 0.32. Divide this ratio by 0.14 to get 1.0 2.3. For each mole of lithium nitride, there are only 2.3 mol water. However, 3 mol are required by stoichiometry. Therefore, water is the limiting reactant. [Pg.254]

Think About It Remember that the coefficients in balanced chemical equations indicate ratios in molecules or moles. Under conditions of constant temperature and pressure, the volume of a gas is proportional to the number of moles. Therefore, the coefficients in balanced equations containing only gases also indicate ratios in liters, provided the reactions occur at constant temperature and pressure. [Pg.426]

The balanced chemical equation for a reaction is used to set up the mole ratio, a factor that is used to convert the amount of one substance into the amount of another. [Pg.110]

Step 2 Use the mole ratio derived from the stoichiometric coefficients in the balanced chemical equation to convert from the amount of one substance (A) into the amount in moles of the other substance (B). For aA - / B or aA + hY> — cC, use... [Pg.110]

Step 2 (a) Write the chemical equation for the reaction, (b) infer the mole ratio between the titrant species and the analyte species and (c) use it to convert the amount of titrant into amount of analyte (rValvte)-... [Pg.112]

Step 2 (a) Write the chemical equation, (b) Infer the mole ratio. [Pg.112]

In this approach, we use the mole ratio from the chemical equation to determine whether there is enough of one reactant to react with another. [Pg.118]

To summarize, the amounts of different reagents that participate in a chemical reaction are related through the stoichiometric coefficients in the balanced chemical equation. To convert from moles of one reagent to moles of any other reagent, multiply by the stoichiometric ratio that leads to proper cancellation of units ... [Pg.207]

We have data for the amounts of both starting materials, so this is a limiting reactant problem. Given the chemical equation, the first step in a limiting reactant problem is to determine the number of moles of each starting material present at the beginning of the reaction. Next compute ratios of moles to coefficients to identify the limiting reactant. After that, a table of amounts summarizes the stoichiometry. [Pg.320]

The coefficients of any balanced redox equation describe the stoichiometric ratios between chemical species, just as for other balanced chemical equations. Additionally, in redox reactions we can relate moles of chemical change to moles of electrons. Because electrons always cancel in a balanced redox equation, however, we need to look at half-reactions to determine the stoichiometric coefficients for the electrons. A balanced half-reaction provides the stoichiometric coefficients needed to compute the number of moles of electrons transferred for every mole of reagent. [Pg.1397]

When two substances react, they react in exact amounts. You can determine what amounts of the two reactants are needed to react completely with each other by means of mole ratios based on the balanced chemical equation for the reaction. In the laboratory, precise amounts of the reactants are rarely used in a reaction. Usually, there is an excess of one of the reactants. As soon as the other reactant is used up, the reaction stops. The reactant that is used up is called the limiting reactant. Based on the quantities of each reactant and the balanced chemical equation, you can predict which substance in a reaction is the limiting reactant. [Pg.89]

Mole ratios can be used to determine the amount of one substance needed to react with a given amount of another substance. In this experiment, you will react a substance called an acid with another substance called a base. Acids can be defined as substances that dissociate and produce hydrogen (H+) ions when dissolved in water. Bases are substances that ionize to produce hydroxide (OH ) ions when they dissolve in water. When acids and bases react with each other, the H+ ions and OH ions join to form water (H20). The resulting solution no longer has an excess of either H+ ions or OH- ions. The solution has become neutral. This process is called neutralization. By using the mole ratio of hydrogen ions and hydroxide ions in the balanced chemical equation, you can predict the point at which a solution becomes neutral. [Pg.93]

A chemical equation describes a chemical reaction in many ways as an empirical formula describes a chemical compound. The equation describes not only which substances react, but the relative number of moles of each undergoing reaction and the relative number of moles of each product formed. Note especially that it is the mole ratios in which the substances react, not how much is present, that the equation describes. In order to show the quantitative relationships, the equation must be balanced. That is, it must have the same number of atoms of each element used up and produced (except for special equations that describe nuclear reactions). The law of conservation of mass is thus obeyed, and also the "law of conservation of atoms. Coefficients are used before the formulas for elements and compounds to tell how many formula units of that substance are involved in the reaction. A coefficient does not imply any chemical bonding between units of the substance it is placed before. The number of atoms involved in each formula unit is multiplied by the coefficient to get the total number of atoms of each element involved. Later, when equations with individual ions are written (Chap. 9), the net charge on each side of the equation, as well as the numbers of atoms of each element, must be the same to have a balanced equation. The absence of a coefficient in a balanced equation implies a coefficient of 1. [Pg.114]

The balanced chemical equation may also be used to express the ratios of moles of reactants and products involved. Thus, for the reaction whose equation is given above, 1 mol of N, reacts with 3 mol of H 2 to produce 2 mol of NH,. It is also true that 4 mol of nitrogen can react with 12 mol of hydrogen to produce 8 mol of ammonia, and so on. [Pg.130]

Fig. 8-1 The conversion of moles of one reagent to moles of another, using a ratio of the coefficients of the balanced chemical equation as a factor label... Fig. 8-1 The conversion of moles of one reagent to moles of another, using a ratio of the coefficients of the balanced chemical equation as a factor label...
Arts. The chemist can put in as little as is weighable or as much as the vessel will hold. For example, the fact that a reactant has a coefficient of 2 in the balanced chemical equation does not mean that the chemist must put two moles into the reaction vessel. The chemist might decide to add the reactants in the ratio of the balanced chemical equation, but even that is not required. And even in that case, the numbers of moles of each reactant might be twice the respective coefficients or one-tenth those values, etc. The equation merely states the reacting ratio. [Pg.135]

The net ionic equation, like all balanced chemical equations, gives the ratio of moles of each substance to moles of each of the others. It does not immediately yield information about the mass of the entire salt, however. (One cannot weigh out only Ba2+ ions.) Therefore, when masses of reactants are required, the specific compound used must be included in the calculation. The use of net ionic equations in stoichiometric calculations will be more important after study of molarity (Chap. 10). [Pg.155]

The balanced chemical equation shows that the ratio of moles of HC1 to Ba(OH)2 is 2 1. [Pg.169]

The changes brought about by the chemical reaction arc a little different in this case. Twice as many moles per liter of A are used up as moles per liter of C are produced. Note that the magnitudes in the middle row of this table and the coefficients in the balanced chemical equation are in the same ratio. [Pg.290]

You are starting with moles of iron and want grams of Fe203 so we ll first convert from moles of iron to moles of Fe203 using the ratio of moles of Fe203 to moles of iron as defined by the balanced chemical equation ... [Pg.36]

We calculate the mole-to-coefficient ratio of each reactant by dividing the moles of that reactant by its coefficient in the balanced chemical equation. The reactant that has the smallest mole-to-coefficient ratio is the limiting reactant. Many of us use this method. [Pg.37]

The mole is the most important concept in this chapter. Nearly every problem associated with this material requires moles in at least one of the steps. You should get into the habit of automatically looking for moles. There are several ways of finding the moles of a substance. You may determine the moles of a substance from a balanced chemical equation. You may determine moles from the mass and molecular weight of a substance. You may determine moles from the number of particles and Avogadro s number. You may find moles from the moles of another substance and a mole ratio. Later in this book, you will find even more ways to determine moles. In some cases, you will be finished when you find moles, in other cases, finding moles is only one of the steps in a longer problem. [Pg.40]

The term (2 mol HC1/1 mol H2) is a mole ratio. We got this mole ratio directly from the balanced chemical equation. The balanced chemical equation has a 2 in front of the HC1, thus we have the same number in front of the mol HC1. The balanced chemical equation has an understood 1 in front of the H2, for this reason the same value belongs in front of the mol H2. The values in the mole ratio are exact numbers, and, as such, do not affect the significant figures. [Pg.41]

To find the moles of IF5 from the limiting reagent, we need to use a mole ratio derived from information in the balanced chemical equation. (This is another place where, if we had not balanced the equation, we would be in trouble.)... [Pg.43]

Now let us try an example needing additional information after the mole ratio step. I low many grams of calcium hydroxide are necessary to titrate 0.200 mol of acetic acid As usual, we begin by adding this information to the balanced chemical equation ... [Pg.73]

You should be very careful when working problems involving gases and one or more other phases. The gas laws can only give direct information about gases. This is why there is a mole ratio conversion (from the balanced chemical equation) in this example to convert from the solid (KCI03) to the gas (02). [Pg.93]

A stoichiometry calculation is thus essentially a three-step procedure in which 1) the weight of D is divided by its formula weight to get moles of D, 2) the moles of D are converted to the moles of A by multiplying by the mole ratio a/d, as found in the chemical equation, and 3) the moles of A are converted to grams of A by multiplying by the formula weight of A. [Pg.497]

A balanced chemical equation provides many types of information. It shows which chemical species are the reactants and which species are the products. It may also indicate in which state of matter the reactants and products exist. Special conditions of temperature, catalysts, etc., may be placed over or under the reaction arrow. And, very importantly, the coefficients (the integers in front of the chemical species) indicate the number of each reactant that is used and the number of each product that is formed. These coefficients may stand for individual atoms/molecules or they may represent large numbers of them called moles (see the Stoichiometry chapter for a discussion of moles). The basic idea behind the balancing of equations is the Law of Conservation of Matter, which says that in ordinary chemical reactions matter is neither created nor destroyed. The number of each type of reactant atom has to equal the number of each type of product atom. This requires adjusting the reactant and product coefficients—balancing the equation. When finished, the coefficients should be in the lowest possible whole-number ratio. [Pg.68]

Be able to convert from moles of one substance to moles of another, using the stoichiometric ratio derived from the balanced chemical equation. [Pg.101]

The pipeted volume is converted to moles by multiplying the liters of solution by its molarity. The moles of titrant are determined using the mole ratio in the balanced chemical equation for the acid—base reaction. The molarity of the solution is calculated by dividing the moles of titrant by the liters of titrant used. [Pg.287]

Convert the masses of the reactants and products to moles using their molar masses. Using the mole ratios from the balanced chemical equation, it is possible to determine how much material should react or be produced. These calculated values can be compared to the observed values. [Pg.288]

By measuring the mass of iron that reacts and the mass of copper metal produced, you can calculate the ratio of moles of reactant to moles of product. This mole ratio can be compared to the ratio found in the balanced chemical equation. [Pg.46]

Which reactant is the limiting reactant How does the experimental mole ratio of Fe to Cu compare with the mole ratio in the balanced chemical equation What is the percent yield ... [Pg.46]


See other pages where Chemical equations mole ratio is mentioned: [Pg.373]    [Pg.373]    [Pg.416]    [Pg.168]    [Pg.169]    [Pg.357]    [Pg.359]    [Pg.386]    [Pg.72]    [Pg.607]   
See also in sourсe #XX -- [ Pg.102 , Pg.128 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.147 ]




SEARCH



Chemical equations moles

Chemicals equations

Equation mole ratios

Mole ratio

© 2024 chempedia.info