Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical bonds single bond

When combining QM with MM methods, the partitioning of the system will often intersect a chemical bond. This bond is usually chosen to be a carbon-carbon single bond (whenever possible) and three major coupling methods have been developed, which are referred to as the link-atom [54] , pseudo-atom/bond [55] and hybrid-orbital [56] approach, respectively. In the link atom approach the open valency at the border is capped by a hydrogen atom, and most DFTB QM/MM implementations are based on this simple scheme [49, 50] or related variations [57], Recently,... [Pg.177]

Describes shielding and unshielding by IH-NMR chemical shift single bonds. prediction. [Pg.396]

In some cases a silane (A-187 Union Carbide) was applied to the A1 adherends as a coupling agent for better chemical bonding. Single lap shear (SLS) joints were primed with all four PAMAMs, bonded with epoxy or PU adhesives, and tested in shear according to ASTM D-1002 at a loading speed of 2 mmmin . ... [Pg.221]

The double bond is not stronger than the single bond on the contrary, it is more vulnerable, making unsaturated compounds more chemically reactive than the saturates. [Pg.92]

Ammonia is a colourless gas at room temperature and atmospheric pressure with a characteristic pungent smell. It is easily liquefied either by cooling (b.p. 240 K) or under a pressure of 8-9 atmospheres at ordinary temperature. Some of its physical and many of its chemical properties are best understood in terms of its structure. Like the other group head elements, nitrogen has no d orbitals available for bond formation and it is limited to a maximum of four single bonds. Ammonia has a basic tetrahedral arrangement with a lone pair occupying one position ... [Pg.216]

Both methods suggest that the chemical structure of A A (cis double bonds connected by two single bonds) allows the fatty acid to access the cyclooxygenase active site of PGHS-1 through a narrow hydrophobic channel and to bind in a shape favorable for the cyclooxygenation reaction. [Pg.53]

Boranes are typical species with electron-deficient bonds, where a chemical bond has more centers than electrons. The smallest molecule showing this property is diborane. Each of the two B-H-B bonds (shown in Figure 2-60a) contains only two electrons, while the molecular orbital extends over three atoms. A correct representation has to represent the delocalization of the two electrons over three atom centers as shown in Figure 2-60b. Figure 2-60c shows another type of electron-deficient bond. In boron cage compounds, boron-boron bonds share their electron pair with the unoccupied atom orbital of a third boron atom [86]. These types of bonds cannot be accommodated in a single VB model of two-electron/ two-centered bonds. [Pg.68]

In the mid 1970s, Ugi and co-workers developed a scheme based on treating reactions by means of matrices - reaction (R-) matrices [16, 17]. The representation of chemical structures by bond and electron (BE-) matrices was presented in Section 2.4. BE-matrices can be constructed not only for single molecules but also for ensembles of them, such as the starting materials of a reaction, e.g., formaldehyde (methanal) and hydrocyanic add as shown with the B E-matrix, B, in Figure 3-12. Figure 3-12 also shows the BE-matrix, E, of the reaction product, the cyanohydrin of formaldehyde. [Pg.185]

Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

Butadiene, the simplest conjugated diene, has been the subject of intensive theoretical and experimental studies to understand its physical and chemical properties. The conjugation of the double bonds makes it 15 kJ/mole (3.6 kcal/mol) (13) more thermodynamically stable than a molecule with two isolated single bonds. The r-trans isomer, often called the trans form, is more stable than the s-cis form at room temperature. Although there is a 20 kJ/mole (4.8 kcal/mol) rotational barrier (14,15), rapid equiUbrium allows reactions to take place with either the s-cis or r-trans form (16,17). [Pg.341]

Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well. Fig. 3. The lattice-matched double heterostmcture, where the waves shown in the conduction band and the valence band are wave functions, L (Ar), representing probabiUty density distributions of carriers confined by the barriers. The chemical bonds, shown as short horizontal stripes at the AlAs—GaAs interfaces, match up almost perfectly. The wave functions, sandwiched in by the 2.2 eV potential barrier of AlAs, never see the defective bonds of an external surface. When the GaAs layer is made so narrow that a single wave barely fits into the allotted space, the potential well is called a quantum well.
Of these, the most extensive use is to identify adsorbed molecules and molecular intermediates on metal single-crystal surfaces. On these well-defined surfaces, a wealth of information can be gained about adlayers, including the nature of the surface chemical bond, molecular structural determination and geometrical orientation, evidence for surface-site specificity, and lateral (adsorbate-adsorbate) interactions. Adsorption and reaction processes in model studies relevant to heterogeneous catalysis, materials science, electrochemistry, and microelectronics device failure and fabrication have been studied by this technique. [Pg.443]


See other pages where Chemical bonds single bond is mentioned: [Pg.2971]    [Pg.14]    [Pg.14]    [Pg.73]    [Pg.11]    [Pg.14]    [Pg.2]    [Pg.2971]    [Pg.220]    [Pg.54]    [Pg.697]    [Pg.50]    [Pg.18]    [Pg.15]    [Pg.794]    [Pg.226]    [Pg.1057]    [Pg.2189]    [Pg.30]    [Pg.51]    [Pg.52]    [Pg.136]    [Pg.96]    [Pg.147]    [Pg.2]    [Pg.511]    [Pg.419]    [Pg.4]    [Pg.42]    [Pg.265]    [Pg.106]    [Pg.301]    [Pg.27]    [Pg.16]    [Pg.308]    [Pg.428]    [Pg.451]    [Pg.63]    [Pg.69]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Bond , chemical single

Bonding single bonds

Single bonds

© 2024 chempedia.info