Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical bonds Metallic bonding Molecular orbital

Gas-surface interactions and reactions on surfaces play a crucial role in many technologically important areas such as corrosion, adhesion, synthesis of new materials, electrochemistry and heterogeneous catalysis. This chapter aims to describe the interaction of gases with metal surfaces in terms of chemical bonding. Molecular orbital and band structure theory are the basic tools for this. We limit ourselves to metals. [Pg.215]

As holds for other cluster systems, certain magic cluster electron counts exist, which indicates for a certain cluster-halide ratio and interstitial present the filling of all bonding molecular orbitals and therefore the thermodynamically most stable situation. For main group interstitial atoms these are 14 cluster-based electrons whereas for transition-metal interstitials the magic number is 18 [1, 10-12]. All of these phases are synthesized by high-temperature solid-state chemical methods. A remarkable variety of different structure types has been... [Pg.61]

Chemical considerations suggest that metal-olefin back donation will be less important for silver(I) than for platinum(II), and Basch s ab initio calculations on [Ag(C2H4)]+ (75) have confirmed this view. These calculations suggest that most of the electronic rearrangement of the ethylene unit in this complex ion can be accounted for by the polarization effects induced by the positive charge on the silver atom. Indeed, the bonding metal-olefin molecular orbital has only 6.5% Ag 5s orbital character. This result agrees nicely with recent ESR studies on y-irradiated silver-olefin complexes which estimate a 5s spin density of 4.6% for this molecular orbital 92, 93). [Pg.18]

Divalent late transition metals like cobalt (d ), nickel (d ), and copper (d ) in the first row of the d-block can use five 3d orbitals, one 4s orbital, and three 4p orbitals to form 4-, 5-, or 6-coordinate complexes. As a general rule, if there are N ligands in the first-shell coordination sphere of a transition metal complex, then there should be N bonding molecular orbitals, N anti-bonding molecular orbitals, and 9-N nonbonding molecular orbitals. Exceptions to this rule occur in some square-planar complexes in which three orbitals with the same symmetry properties overlap and form chemical bonds. Usually, some coordination sites in the first-shell of the... [Pg.5]

There are two basic differences of (sic) free atoms and chemically bound atoms. First, the more diffuse an AO, the stronger it is perturbed in molecular and condensed matter. The (n + )s AOs of the transition metal atoms, especially of the earlier ones, are not of primary importance for chemical bonding. Their relevance is comparable to that of the diffuse orbitals of main group elements ([34], p 653). [Pg.138]

The theory of band structures belongs to the world of solid state physicists, who like to think in terms of collective properties, band dispersions, Brillouin zones and reciprocal space [9,10]. This is not the favorite language of a chemist, who prefers to think in terms of molecular orbitals and bonds. Hoffmann gives an excellent and highly instructive comparison of the physical and chemical pictures of bonding [6], In this appendix we try to use as much as possible the chemical language of molecular orbitals. Before talking about metals we recall a few concepts from molecular orbital theory. [Pg.300]

Throughout the book, theoretical concepts and experimental evidence are integrated An introductory chapter summarizes the principles on which the Periodic Table is established and describes the periodicity of various atomic properties which are relevant to chemical bonding. Symmetry and group theory are introduced to serve as the basis of all molecular orbital treatments of molecules. This basis is then applied to a variety of covalent molecules with discussions of bond lengths and angles and hence molecular shapes. Extensive comparisons of valence bond theory and VSEPR theory with molecular orbital theory are included Metallic bonding is related to electrical conduction and semi-conduction. [Pg.184]

It is essential to have tools that allow studies of the electronic structure of adsorbates in a molecular orbital picture. In the following, we will demonstrate how we can use X-ray and electron spectroscopies together with Density Functional Theory (DFT) calculations to obtain an understanding of the local electronic structure and chemical bonding of adsorbates on metal surfaces. The goal is to use molecular orbital theory and relate the chemical bond formation to perturbations of the orbital structure of the free molecule. This chapter is complementary to Chapter 4, which... [Pg.57]


See other pages where Chemical bonds Metallic bonding Molecular orbital is mentioned: [Pg.932]    [Pg.29]    [Pg.299]    [Pg.294]    [Pg.366]    [Pg.224]    [Pg.561]    [Pg.158]    [Pg.1554]    [Pg.196]    [Pg.237]    [Pg.128]    [Pg.127]    [Pg.102]    [Pg.117]    [Pg.19]    [Pg.158]    [Pg.691]    [Pg.552]    [Pg.192]    [Pg.33]    [Pg.243]    [Pg.292]    [Pg.56]    [Pg.23]    [Pg.306]    [Pg.45]    [Pg.224]    [Pg.6]    [Pg.212]    [Pg.220]    [Pg.28]    [Pg.162]    [Pg.77]    [Pg.263]    [Pg.14]    [Pg.79]    [Pg.84]    [Pg.90]    [Pg.120]    [Pg.133]   


SEARCH



Bonding molecular orbital

Bonding molecular orbitals

Chemical bond metallic

Chemical bonding metallic

Chemical bonding molecular orbital

Chemical bonds, molecular

Metal chemical bonding

Metal orbitals

Metallic molecular

Metals, chemical bond

Molecular bonding

Molecular bonds/orbitals

Molecular metal

Molecular orbitals bonding orbital

Molecular orbitals chemical bonding

Orbitals metallic

© 2024 chempedia.info