Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical bonds groups

The products made by the above synthetic processes still have large numbers of residual silanols, which lead to poor peak shapes or irreversible adsorption, because chemically bonded groups on the silica gel surface have large, bulky molecular sizes and, after the bonding, the functionalized silane cannot react with the silanols around the bonded ligands. Because such alkyl-bonded phases are used for reversed-phase separations, especially for chromatography of polar molecules, any silanol groups that remain accessible to sol-... [Pg.633]

However, the stability of the chemically bonded groups above pH 8.5 is limited.The stabili-... [Pg.225]

Comparison of various alkyl chain lengths of the chemically bonded groups has led to the conclusion that selectivity is not changed, but that k1 increases with increased alkyl chain... [Pg.226]

Ion An electrically-charged particle obtained from an atom or a chemically-bonded group of atoms by adding or removing one or more electrons. [Pg.13]

Although many substances are molecular, others are composed of ions (pronounced eye -ons ). An ion is an electrically charged particle obtained from an atom or chemically bonded group of atoms by adding or removing electrons. Sodium chloride is a substance made up of ions. [Pg.59]

One potential approach extends the idea of chemical amplification introduced in our preceding description of dry-film resists. In 1982, Ito and co-workers (37,38) recognized that if a photosensitizer producing an acidic product is photolyzed in a polymer matrix containing acid-labile groups, the acid will serve as a spatially localized catalyst for the formation or cleavage of chemical bonds. [Pg.123]

Functionalization. Copolymers do not have the abiHty to exchange ions. Such properties are imparted by chemically bonding acidic or basic functional groups to the aromatic rings of styrenic copolymers, or by modifying the carboxyl groups of the acryHc copolymers. There does not appear to be a continuous functionalization process on a commercial scale. [Pg.373]

Nitration is defined in this article as the reaction between a nitration agent and an organic compound that results in one or more nitro (—NO2) groups becoming chemically bonded to an atom in this compound. Nitric acid is used as the nitrating agent to represent C-, 0-, and N-nitrations. O-nitrations result in esters. N-nitrations result in nitramines. [Pg.32]

This chemical bond between the metal and the hydroxyl group of ahyl alcohol has an important effect on stereoselectivity. Asymmetric epoxidation is weU-known. The most stereoselective catalyst is Ti(OR) which is one of the early transition metal compounds and has no 0x0 group (28). Epoxidation of isopropylvinylcarbinol [4798-45-2] (1-isopropylaHyl alcohol) using a combined chiral catalyst of Ti(OR)4 and L-(+)-diethyl tartrate and (CH2)3COOH as the oxidant, stops at 50% conversion, and the erythro threo ratio of the product is 97 3. The reason for the reaction stopping at 50% conversion is that only one enantiomer can react and the unreacted enantiomer is recovered in optically pure form (28). [Pg.74]

It is possible to react an organic moiety to the hydroxyl groups on ceU waU components. This type of treatment also bulks the ceU with a permanently bonded chemical (68). Many compounds modify wood chemically. The best results are obtained by the hydroxyl groups of wood reacting under neutral or mildly alkaline conditions below 120°C. The chemical system used should be simple and must be capable of swelling the wood stmcture to facUitate penetration. The complete molecule must react quickly with wood components to yield stable chemical bonds while the treated wood retains the desirable properties of untreated wood. Anhydrides, epoxides, and isocyanates have ASE values of 60—75% at chemical weight gains of 20—30%. [Pg.330]

Electron spin resonance (esr) (6,44) has had more limited use in coal studies. A rough estimate of the free-radical concentration or unsatisfied chemical bonds in the coal stmcture has been obtained as a function of coal rank and heat treatment. For example, the concentration increases from 2 X 10 radicals/g at 80 wt % carbon to a sharp peak of about 50 x 10 radicals/g at 95 wt % carbon content and drops almost to zero at 97 wt % carbon. The concentration of these radicals is less than that of the common functional groups such as hydroxyl. However, radical existence seems to be intrinsic to the coal molecule and may affect the reactivity of the coal as well as its absorption of ultraviolet radiation. Measurements from room... [Pg.220]

In the pendent chain systems, the dmg is chemically bound to a polymer backbone and is released by hydrolytic or enzymatic cleavage of the chemical bond. The dmg may be attached directiy to the polymer or may be linked via a spacer group. The spacer group may be used to affect the rate of dmg release and the hydrophilicity of the system. These systems allow very high dmg loadings (over 80 wt %) (89) which decrease the cost of the polymeric materials used ia the systems. These systems have beea examiaed by many iavestigators (111,112). [Pg.231]

The anion-selective (AX) membranes (Eig. 2b) also consist of cross-linked polystyrene but have positively charged quaternary ammonium groups chemically bonded to most of the phenyl groups in the polystyrene instead of the negatively charged sulfonates. In this case the counterions are negatively... [Pg.172]

Metals and alloys, the principal industrial metalhc catalysts, are found in periodic group TII, which are transition elements with almost-completed 3d, 4d, and 5d electronic orbits. According to theory, electrons from adsorbed molecules can fill the vacancies in the incomplete shells and thus make a chemical bond. What happens subsequently depends on the operating conditions. Platinum, palladium, and nickel form both hydrides and oxides they are effective in hydrogenation (vegetable oils) and oxidation (ammonia or sulfur dioxide). Alloys do not always have catalytic properties intermediate between those of the component metals, since the surface condition may be different from the bulk and catalysis is a function of the surface condition. Addition of some rhenium to Pt/AlgO permits the use of lower temperatures and slows the deactivation rate. The mechanism of catalysis by alloys is still controversial in many instances. [Pg.2094]


See other pages where Chemical bonds groups is mentioned: [Pg.1439]    [Pg.768]    [Pg.1293]    [Pg.1367]    [Pg.125]    [Pg.6]    [Pg.1439]    [Pg.768]    [Pg.1293]    [Pg.1367]    [Pg.125]    [Pg.6]    [Pg.714]    [Pg.434]    [Pg.343]    [Pg.147]    [Pg.2]    [Pg.1009]    [Pg.652]    [Pg.3]    [Pg.68]    [Pg.469]    [Pg.39]    [Pg.452]    [Pg.124]    [Pg.197]    [Pg.168]    [Pg.217]    [Pg.442]    [Pg.227]    [Pg.409]    [Pg.409]    [Pg.115]    [Pg.172]    [Pg.2313]    [Pg.219]    [Pg.64]    [Pg.162]    [Pg.413]    [Pg.421]    [Pg.456]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Chemical bonds main-group compounds

Chemical groups

Group work chemical bonding

Phosphoryl group chemical bonds

© 2024 chempedia.info