Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical bonds bond character

A chemical bond s character is related to each atom s attraction for the electrons in the bond. [Pg.238]

A is a parameter that can be varied to give the correct amount of ionic character. Another way to view the valence bond picture is that the incorporation of ionic character corrects the overemphasis that the valence bond treatment places on electron correlation. The molecular orbital wavefimction underestimates electron correlation and requires methods such as configuration interaction to correct for it. Although the presence of ionic structures in species such as H2 appears coimterintuitive to many chemists, such species are widely used to explain certain other phenomena such as the ortho/para or meta directing properties of substituted benzene compounds imder electrophilic attack. Moverover, it has been shown that the ionic structures correspond to the deformation of the atomic orbitals when daey are involved in chemical bonds. [Pg.145]

The stability of isothiazole derives from the fact that it has an aromatic delocalized ir-electron system. The NMR chemical shifts, which depend, inter alia, on ring currents, and the high stability of the molecular ions in mass spectrometry, are typical of aromatic compounds, and X-ray measurements confirm the partial double bond character of all the bonds of the ring. [Pg.145]

Despite the relatively short history of the chemistry of fluoride compounds, several thousands of binary and ternary fluoride compounds have been described, and their systematization is well developed [39 - 41]. Significant progress was achieved in the study of the crystal chemistry of fluoride compounds thanks to the ionic character of their chemical bonds and corresponding simplicity of their ciystal structure. The structure of these kinds of compounds is defined primarily by the geometry and the energy of mainly... [Pg.8]

At the same time, the relatively low energy and ionic character of the chemical bonds between metal and fluorine cause some difficulties in the application of fluoride compounds. First, fluorides typically have a tendency towards thermolysis and hygroscopicity. In addition, fluoride compounds usually display relatively low temperatures of electrostatic and magnetic ordering. [Pg.9]

The variation in the repolarization character causes systematic changes in the properties of the materials. Particularly, the transition from onedimensional structure compounds to three-dimensional structure compounds is accompanied by a decrease in the spontaneous polarization value and in the compound s Curie temperature, and a change in the character of the compound s chemical bonds [390]. [Pg.218]

We see again that there is but one principle which causes a chemical bond between two atoms all chemical bonds form because electrons are placed simultaneously near two positive nuclei. The term covalent bond indicates that the most stable distribution of the electrons (as far as energy is concerned) is symmetrical between the two atoms. When the bonding electrons are somewhat closer to one of the atoms than the other, the bond is said to have ionic character. The term ionic bond indicates the electrons are displaced so much toward one atom that it is a good approximation to represent the bonded... [Pg.288]

Needless to say, if ionic character affects the energy stability of a chemical bond it also affects the chemistry of that bond. The tendency toward minimum energy is one of the factors that determine what chemical changes will occur. As a bond becomes stronger, more energy is required to break that bond to form another compound. Hence we see that ionic bonds are favored over covalent bonds and that ionic character in a bond affects its chemistry. [Pg.290]

The chemisorptive bond is a chemical bond. The nature of this bond can be covalent or can have a strong ionic character. The formation of the chemisorptive bond in general involves either donation of electrons from the adsorbate to the metal (donation) or donation of electrons from the metal to the adsorbate (backdonation).2 In the former case the adsorbate is termed electron donor, in the latter case it is termed electron acceptor.3 In many cases both donation and backdonation of electrons is involved in chemisorptive bond formation and the adsorbate behaves both as an electron acceptor and as an electron donor. A typical example is the chemisorption of CO on transition metals where, according to the model first described by Blyholder,4 the chemisorptive bond formation involves both donation of electrons from the 7t orbitals of CO to the metal and backdonation of electrons from the metal to the antibonding n orbitals of CO. [Pg.279]

A possibly more accurate value for the double bond character of the bonds in benzene (0.46) id obtained by considering all five canonical structures with weights equal to the squares of their coefficients in the wave function. There is some uncertainty aS to the significance of thfa, however, because of- the noii -orthogOnality of the wave functions for the canonical structures, and foF chemical purposes it fa sufficiently accurate to follow the simple procedure adopted above. [Pg.203]

The effect of this partial double bond character on the chemical properties of chlorine atoms conjugated to double bonds is well known it corresponds in the main to a diminution in reactivity. The correlation with bond angles is discussed in a later section of this paper. [Pg.205]

Most methods of testing bond type involve the motion of nuclei. The chemical method, such as substitution at positions adjacent to a hydroxyl group in testing for double-bond character, as used in the Mills-Nixon studies, is one of these. This method gives only the resultant bond type over the period required for the reaction to take place. Since this period is much longer than that of ordinary electronic resonance, the chemical method cannot be used in general to test for the constituent structures of a resonating molecule. Only in case that the resonance frequency is very small (less than the frequencies of nuclear vibration) can the usual methods be applied to test for the constituent structures and in this case the boundary between resonance and tautomerism is approached or passed. [Pg.252]

The quantum mechanical argument used in deriving the original electronegativity scale involved the amount of ionic character of a normal covalent bond A—B, and it was evident that the amount of ionic character and accordingly the value of the electric dipole moment of the bond would be closely correlated with the difference Ax = xA — xB of the two atoms A and B. In the first edition of The Nature of the Chemical Bond (1939) the following equation was advanced ... [Pg.332]

Both phenomena attest to the covalency of the chemical bonding in these species. Incidentally, they also highlight the different characters and implications of the spectrochemical and nephelauxetic series. Within either lanthanoid- or (higher oxidation state) J-block species, the ligand orbitals overlap with the metal s functions... [Pg.204]

Class II dependence for the activation of a chemical bond as a function of surface metal atom coordinative unsaturation is typically found for chemical bonds of a character, such as the CH or C-C bond in an alkane. Activation of such bonds usually occurs atop of a metal atom. The transition-state configuration for methane on a Ru surface illustrates this (Figure 1.13). [Pg.20]

It is essential to realize that electrons In the nitrate anion do not flip back and forth among the three bonds, as implied by separate structures. The true character of the anion is a blend of the three, In which all three nitrogen-oxygen bonds are equivalent. The need to show several equivalent structures for such species reflects the fact that Lewis structures are approximate representations. They reveal much about how electrons are distributed in a molecule or ion, but they are imperfect instruments that cannot describe the entire story of chemical bonding, hi Chapter 10, we show how to interpret these structures from a more detailed bonding perspective. [Pg.600]


See other pages where Chemical bonds bond character is mentioned: [Pg.2391]    [Pg.265]    [Pg.301]    [Pg.64]    [Pg.285]    [Pg.326]    [Pg.12]    [Pg.138]    [Pg.74]    [Pg.363]    [Pg.366]    [Pg.761]    [Pg.78]    [Pg.805]    [Pg.9]    [Pg.299]    [Pg.508]    [Pg.261]    [Pg.9]    [Pg.5]    [Pg.5]    [Pg.208]    [Pg.335]    [Pg.228]    [Pg.228]    [Pg.82]    [Pg.113]    [Pg.161]    [Pg.2]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Bond character

Bonding character

Change of Chemical Bond Character under Pressure

Chemical bonds, 206 character

Chemical bonds, 206 character

Chemical bonds, 206 character covalent

Chemical bonds, 206 character metallic

© 2024 chempedia.info